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Abstract. We investigate the behavior of integral formulations of variable coefficient elliptic
partial differential equations (PDEs) in the presence of steep internal layers. In one dimension, the
equations that arise can be solved analytically and the condition numbers estimated in various Lp
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1. Introduction. A number of problems in computational physics require the
solution of divergence-form elliptic equations

∇ · (ε(x)∇u(x)) = f(x) (1.1)

where ε(x) is a scalar function with steep internal layers in a domain Ω. We assume
for the sake of concreteness that u(x) satisfies a Dirichlet boundary condition

u(x) = g(x) (1.2)

for x ∈ ∂Ω, but the basic approach outlined below applies equally well to other types
of boundary conditions. Equations of the form (1.1) arise, for example, in fluid dy-
namics [2, 22], where ε(x) is the inverse of the fluid density and in semiconductor
device simulation [23], where ε(x) can be either the semiconductor permittivity, or a
complicated function determined by electron and hole mobilities and diffusion coeffi-
cients. They also arise in phase field models for microstructure evolution in materials
science [7]. When ε is piecewise constant, boundary integral equation methods are
well-known to be extremely effective (see, for example, [13, 14, 17, 24, 25]). When
ε is smooth but has a steep internal layer, however, the domain itself must be dis-
cretized. This is a difficulty encountered in many of the applications mentioned above,
especially in semiconductor device simulation. In that setting, it is most common to
use adaptive finite difference or finite element approximations based on the partial
differential equation itself [4, 21, 27].

Volume integral equations can also been used for problems such as (1.1). There
is a substantial literature in this area, which we do not attempt to review, except
to observe that there are a variety of analytic methods which can be used to derive
integral formulations, a variety of numerical methods which can be used for their
discretization, and a variety of fast algorithms which can be used for iterative or
direct solution [5, 6, 8, 9, 10, 11, 16, 18, 20, 26].
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In this paper, we focus on the behavior of volume integral methods in one dimen-
sion, where the divergence form equation reduces to

∂

∂x

(
ε(x)

∂u

∂x

)
= f . (1.3)

For the sake of simplicity, we assume the solution is subject to homogeneous
Dirichlet conditions on the interval [a, b], that is u(a) = u(b) = 0. We assume that
ε(x) is positive, smooth and bounded, but may have steep gradients, so that its
derivative εx(x) can be arbitrarily large, corresponding to an internal layer. Without
care, this can lead to arbitrarily badly conditioned linear systems. While there is
some literature on analyzing the conditioning of second kind integral equations (see,
for example, [1, 19]), the influence of the choice of Lp space has received relatively
little attention. Here, we show that a combination of adaptivity and a suitable norm-
preserving discretization, to be defined below, leads to condition numbers that depend
only weakly on εx. In particular, we show that for a Lippmann-Schwinger type integral
equation with the second derivative uxx as the unknown, a discretization that is norm-
perserving in L1 leads to nearly optimal schemes.

Our work was motivated, in part, by Bremer’s analysis of boundary integral
equations for scattering problems in the presence of corners [3]. He showed that
naive Nyström discretization leads to ill-conditioned linear systems, but that suitable
L2-weighting corrects the difficulty both in theory and in practice.

2. The integral equation. There are several standard methods for converting
the ordinary differential equation (1.3) to an integral equation, typically making use
of the Green’s function G(x, t) that satisfies

d2

dx2
G(x, t) = δ(x− t), G(a, t) = G(b, t) = 0 .

It is well-known [15] and easy to verify that

G(x, t) =
{

(x− a)(t− b)/(b− a) if x < t
(x− b)(t− a)/(b− a) if x ≥ t . (2.1)

We can rewrite the equation (1.3) in the form

uxx +
εx
ε
ux =

f

ε
(2.2)

and represent the solution as

u(x) =
∫ b

a

G(x, t)σ(t) dt . (2.3)

Letting g = f/ε, we obtain the following integral equation for the unknown density
σ:

σ(x) +
εx(x)
ε(x)

∫ b

a

Gx(x, t)σ(t) dt = g(x) , (2.4)

or

(I +K1)σ(x) = g(x) (2.5)
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where

K1σ(x) =
εx(x)
ε(x)

∫ b

a

Gx(x, t)σ(t) dt .

Alternatively, we can rewrite (1.3) in the form

(εu)xx − (εxu)x = f . (2.6)

Integrating (2.6) against G(x, t) yields

u(x) +
1
ε(x)

∫ 1

0

Gx(x, t)(εx(t)u(t)) dt =
1
ε(x)

∫ 1

0

G(x, t)f(t)dt (2.7)

or

(I +K2)u(x) =
1
ε(x)

∫ b

a

G(x, t)f(t)dt , (2.8)

where

K2u(x) =
1
ε(x)

∫ 1

0

Gx(x, t)(εx(t)u(t)) dt .

The principal difference between (2.4) and (2.7) is that, in the former, σ(x) = uxx(x)
is the unknown while, in the latter, u(x) is the unknown. Both are Fredholm equations
of the second kind.

2.1. Analytic solution of the integral equation. For the sake of simplicty,
let us assume in this section that [a, b] = [0, 1]. From the original ODE (1.3), we have

(ε(x)ux(x))x = g(x)ε(x)

ε(x)ux(x) =
∫ x

0

g(t)ε(t) dt+ ε(0)ux(0)

ux(x) =
1
ε(x)

∫ x

0

g(t)ε(t) dt+
ε(0)ux(0)
ε(x)

(2.9)

Using the fact that σ = uxx, we may write

σ(x) = g(x)− εx(x)
ε(x)2

(∫ x

0

g(t)ε(t) dt+ ε(0)ux(0)
)
. (2.10)

To remove the ε(0)ux(0) term from the expression, we integrate the equation (2.9).

u(1)− u(0) =
∫ 1

0

1
ε(x)

∫ x

0

g(t)ε(t) dt dx+ ε(0)ux(0)
∫ 1

0

1
ε(x)

dx

so that

ε(0)ux(0) = −
∫ 1

0
1
ε(x)

∫ x
0
g(t)ε(t) dt dx∫ 1

0
1
ε(x) dx

. (2.11)
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Letting A1 = I +K1 denote the operator applied to σ on the left-hand side of (2.4),
we now have an expression for its inverse in the form A−1

1 = I −R1. From (2.10) and
(2.11),

σ(x) = g(x)− εx(x)
ε(x)2

∫ x

0

g(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
g(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

 .

From this, it is straightforward to obtain the following formula for the resolvent kernel
R1:

R1(x, t) =
εx(x)
ε(x)2

H(x− t)ε(t)− ε(t)∫ 1

0
1
ε(s) ds

∫ 1

t

1
ε(s)

ds

 , (2.12)

where H(x) is the standard Heavyside function.
Letting A2 = I+K2 denote the operator applied to u on the left-hand side of (2.7),

a similar calculation yields an expression for its inverse in the form A−1
2 = I −R2. In

this case, R2 is

R2(x, t) = −εx(t)
ε(t)2

H(x− t)ε(t)− ε(t)∫ 1

0
1
ε(s) ds

∫ x

0

1
ε(s)

ds

 . (2.13)

Having analytic expressions for the resolvent kernels permits us to obtain simple
estimates for the condition number of the operators A1 and A2 acting on Lp spaces
for 1 ≤ p ≤ ∞. It is worth noting an important difference between the two resolvent
kernels: the term εx/ε

2 in (2.13) is evaluated at t rather than x. Letting h be the
right-hand side of (2.7), we see that εx/ε2 is integrated when applying the inverse
operator for A2:

u(x) = h(x) +
∫ x

0

h(t)
εx(t)
ε(t)

dt−
∫ 1

0
h(s) εx(s)

ε(s) ds∫ 1

0
1
ε(s) ds

∫ x

0

1
ε(t)

dt . (2.14)

3. Integral Equation Operator Bounds. We wish to characterize functions
ε(x) that are uniformly bounded from above and below. This condition is formalized
as follows:

Definition 3.1. Let E ⊂ C1[a, b] denote a family of continuously differentiable
functions on the interval [a, b]. The family E satisfies Property 1 if m > 0 and M <∞
where

m = inf
ε∈E

[
min
x∈[a,b]

ε(x)
]

and M = sup
ε∈E

[
max
x∈[a,b]

ε(x)
]
.

We then have the following result for the condition number of the operator A1(ε),
the Fredholm operator on the left-hand side of (2.4), as a function of the variable
coefficient ε.

Theorem 1. Let E be a family of functions satisfying Property 1. Then there
exist C1(m,M) and C2(m,M) such that

C1

∥∥∥εx
ε

∥∥∥2

p
≤ condp(A1(ε)) ≤ C2

∥∥∥εx
ε

∥∥∥2

p
+ 1 ,
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where condp(A1(ε)) is the condition number of A1(ε) as an operator from Lp[a, b] →
Lp[a, b] for 1 ≤ p <∞ and as an operator from L∞[a, b]∩C[a, b]→ L∞[a, b]∩C[a, b]
for p =∞.

A proof can be found in the Appendix. Theorem 1 gives us a sense of the qual-
itative behavior of A1(ε) acting on Lp spaces. In particular, its condition number is
well-controlled in L1, even when there are steep internal layers (where εx/ε can be
large). In L1, it is the total variation of ε that matters. In the L∞ norm, on the other
hand, the operator norm can be seen to be large by inspection. A dual result can be
obtained for the integral operator A2(ε) = I +K2 in (2.8).

Theorem 2. Let E be a family of functions satisfying Property 1. Then there
exist C1(m,M) and C2(m,M) such that

C1

∥∥∥εx
ε

∥∥∥2

q
≤ condp(A2(ε)) ≤ C2

∥∥∥εx
ε

∥∥∥2

q
+ 1 ,

where 1/p+1/q = 1 and condp(A2(ε)) is the condition number of A2(ε) as an operator
from Lp[a, b] → Lp[a, b] for 1 ≤ p < ∞ and as an operator from L∞[a, b] ∩ C[a, b] →
L∞[a, b] ∩ C[a, b] for p =∞.

The proof of Theorem 2 is analogous to the proof of Theorem 1. Since the
condition number in Lp depends on the Lq norm of εx/ε in this case, it is clear that
the condition number of A2(ε) will be modest in L∞ and very large in L1 in the
presence of internal layers.

4. Norm-Preserving Discretization. In order to analyze the condition num-
ber of discretized integral equations, it is convenient to introduce the following defi-
nition.

Definition 4.1. A mapping Φ : V ⊂ Lp[a, b]→ Cn is said to be norm-preserving
if

‖Φ(g)‖lp = ‖g‖Lp[a,b]

for all g ∈ V . Let A be an invertible, bounded integral operator mapping V to U .
We say that a matrix Ah(V ) is a norm-preserving discretization of A on the subspace
V if there exist norm-preserving mappings Φ and Ψ such that the diagram

V ⊂ Lp[a, b] A−−−−→ U ⊂ Lp[a, b]yΨ

yΦ

Cn Ah−−−−→ Cn

commutes.
In the Hibert space case (p = 2), it was shown in [3] that inner product preserving

discretizations have singular values which approximate those of the original operator.
In the Banach space setting, it is easy to show something equally useful, namely that
the condition number of a norm-preserving discretization approximates that of the
original operator.

For this, let B|W denote the restriction of an operator B to a subspace W . Let
A be an invertible, bounded operator mapping V to U , let Ψ, Φ be norm-preserving
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mappings and let Ah be a norm-preserving discretization of A, as above. Then,

‖Ah|Ψ(V )‖lp = sup
v∈Ψ(V )

‖Ahv‖lp
‖v‖lp = sup

g∈V

‖Ag‖Lp

‖g‖Lp

= ‖A|V ‖Lp , (4.1)

‖A−1
h |Φ(U)‖lp = sup

w∈Ψ(V )

‖w‖lp
‖Ahw‖lp = sup

f∈V

‖f‖Lp

‖Af‖Lp

= ‖A−1|U‖Lp . (4.2)

Thus, the condition number of Ah restricted to Ψ(V ) and of A restricted to V are the
same.

4.1. Norm-preserving Nyström discretizations. We build (approximate)
norm-preserving Nyström discretizations for A by applying a quadrature rule to the
integral operator A = I +K:

Af(x) = f(x) +
∫ b

a

K(x, y)f(y) dy .

For this, we assume that we are given an n-point quadrature rule∫ b

a

f(x) dx ≈
n∑
k=1

f(xk)wk ,

with positive weights. This induces a mapping Φ: Lp[a, b]→ Cn:

Φ(f) =


f(x1)w1/p

1
...

f(xn)w1/p
n

 (4.3)

Let us assume for the moment that the quadrature rule is exact for functions of the
form |g|p for g ∈ V and |f |p for f ∈ U . Then, Φ is a norm-preserving mapping from
V into Cn and U into Cn. Further, assume that the quadrature rule is exact for
functions of the form K(x, ·)g(·) where g ∈ V , and that Ah is given by the Nyström
discretization:

(Ah)ij = δij +K(xi, xj)w
1/p
i w

1−1/p
j . (4.4)

Then Ah is norm-preserving, since

[AhΦ(g)]i = g(xi)w
1/p
i + w

1/p
i

n∑
j=1

K(xi, xj)w
1−1/p
j g(xj)w

1/p
j

= w
1/p
i

(
g(xi) +

∫ b

a

K(xi, y)g(y) dy

)
. (4.5)

The properties assumed of the quadrature rule above are too rigid to hold in practice.
However, it is straightforward to relax the assumption of exactness of the quadrature
rule, and replace (4.5) with an approximate relation, without changing the argument
in a substantial way.

Remark 1. An alternative is to replace the equivalence in Definition 4.1 with
uniform bounds of the type:

c0‖g‖Lp[a,b] ≤ ‖Φ(g)‖lp ≤ c1‖g‖Lp[a,b] .
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For the sake of readability, we will abuse notation in this paper and use the phrase
norm-preserving to mean norm-preserving in this approximate sense.

We note that discretization by sampling, i.e. where

Φ(f) =

 f(x1)
...

f(xn)


corresponds to a norm-preserving Nyström discretization on the space L∞[a, b] ∩
C[a, b]. In particular, suppose we let V ⊂ L∞[a, b]∩C[a, b] be equicontinuous and let
δ > 0. Then, by taking a fine enough mesh we can clearly satisfy

‖Φ(f)‖l∞ ≤ ‖f‖L∞ ≤ ‖Φ(f)‖l∞(1 + δ)

for any f ∈ V . In short, the simplest Nyström discretization, corresponding to sam-
pling the unknown on a grid, results in a discrete operator whose `∞ condition number
approximates that of the continuous operator acting on L∞[a, b] ∩ C[a, b].

4.2. Discrete condition number estimates in alternate norms. Two as-
pects of norm-preserving discretizations should be noted here. First, the fact that
a discretized operator equation is well-conditioned in lp for some p may not be very
informative if we solve the finite-dimensional linear algebra problem using a different
norm. Suppose, for example, that we wish to solve the equation (2.4), which is well-
conditioned in L1. After discretization using (4.4), it is well-conditioned in l1 as well.
However, if we use an iterative scheme such as GMRES [28], which minimizes the l2

norm of the error in a Krylov space, we would like to ensure that the l2 condition
number remains modest. (One could, of course, solve linear systems iteratively in lp

spaces, but the procedures are nonlinear and much more expensive.)
Fortunately, in finite dimensional spaces, norms and condition numbers are all

equivalent and satisfy simple relations [12]. For instance,

cond2(Ah) ≤ n cond1(Ah) . (4.6)

Thus, if the system size is modest and we employ a norm-preserving discretization
for L1, we will have an acceptable bound on the l2 condition number of the system
matrix (4.4).

A second, closely related, feature of norm-preserving discretizations is that spatial
adaptivity is essential for the choice of Lp to have an impact. One can see from (4.4)
that for a uniform mesh (with wi = h = 1

n for all i), the resulting matrix Ah is the
same for every p. Thus, if the continuous operator equation has a large condition
number in L2, the discretized equation will be ill-conditioned in l2 as well.

We will return to these issues in section 6, following an exploration of the behavior
of the l1, l2 and l∞ discretizations on some model problems.

5. Numerical Examples. To investigate the utility of the analysis outlined
above, let us first consider functions ε(x) in (1.3) of the form

εδ(x) = 2 + tanh(δ(x− x0)) (5.1)

on the interval [0, 2], where x0 ∈ (0, 2). For large values of δ, these functions have a
steep internal layer centered at x = x0. They are bounded in the range [1, 3]. As a
result, the family

E = {εδ ∈ Lp : δ ≥ 10} (5.2)
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satisfies Property 1 as given in Definition 3.1. Note that the derivative (εδ)x =
δ sech2(δ(x− x0)), so that

‖(εδ)x‖p =
(∫ 2

0

δp sech2p(δ(x− x0)) dx
)1/p

≤ δ
(∫ 2

0

sech2(δ(x− x0)) dx
)1/p

= δ(1−1/p) (tanh(δ(2− x0)) + tanh(δx0))1/p

≤ 2δ(1−1/p) (5.3)

and

‖(εδ)x‖p =
(∫ 2

0

δp sech2p(δ(x− x0)) dx
)1/p

≥ δ
(∫ 1/δ

0

sech2p(δx) dx

)1/p

≥ sech2(1)δ(1−1/p) . (5.4)

Combining (5.3) with (5.4) and the fact that the εδ are uniformly bounded above and
below, we have

∥∥∥∥ (εδ)x
εδ

∥∥∥∥
p

= Θ
(
δ(1−1/p)

)
(5.5)

for 1 ≤ p < ∞, using the standard “Big Theta” notation. It is straightforward to
check that ∥∥∥∥ (εδ)x

εδ

∥∥∥∥
∞

= Θ (δ) . (5.6)

Letting A1(ε) and A2(ε) be the operators given by the left-hand sides of (2.5) and
(2.8), respectively, and applying Theorem 1 to the family E , we see that

cond1(A1(εδ)) = Θ(1),
cond2(A1(εδ)) = Θ(δ),

cond∞(A1(εδ)) = Θ(δ2).

Likewise, we have

cond1(A2(εδ)) = Θ(δ2),
cond2(A2(εδ)) = Θ(δ),

cond∞(A2(εδ)) = Θ(1).

We discretize the integral equations (2.4) and (2.7), using a norm-preserving
Nyström discretization scheme, as described in section 4.1. For this, we adaptively
refine the interval [a, b] so that the function ε(x) is well resolved with a piecewise
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Legendre polynomial approximation to a user-specified precision. More precisely, we
use piecewise 16th order approximations, and refine each interval until the quadrature
error in integrating ε is less than 10−15. On each subinterval, we sample all func-
tions involved (u, ε, f) at the scaled Gauss-Legendre nodes of order 16. We use the
standard Gauss-Legendre quadrature weights scaled to each subinterval. Given these
nodes and weights, the norm-preserving discretization (4.4) in Lp applied to equation
(2.4) yields

σ(xi)w
1/p
i +

εx(xi)
ε(xi)

∑
j

Gx(xi, xj)w
1−1/p
j w

1/p
i σ(xj)w

1/p
j = g(xi)w

1/p
i . (5.7)

Likewise, equation (2.7) yields

u(xi)w
1/p
i +

1
ε(xi)

∑
j

Gx(xi, xj)εx(xj)w
1−1/p
j w

1/p
i u(xi)w

1/p
i = h(xi)w

1/p
i (5.8)

where h is simply the right-hand side of (2.7). We will use A1,p(ε) and A2,p(ε) to
denote the p-norm-preserving discretizations of these integral operators. Because the
unknowns σ and u are weighted by w

1/p
i , we see that the entries of the discrete

operators are given by

[A1,p(ε)]ij = δij +
εx(xi)
ε(xi)

Gx(xi, xj)w
1−1/p
j w

1/p
i

[A2,p(ε)]ij = δij +
εx(xj)
ε(xi)

Gx(xi, xj)w
1−1/p
j w

1/p
i

5.1. Condition Numbers. Using the family of functions E defined above, we
may study the lp condition numbers of our discrete operators A1,p(εδ) and A2,p(εδ)
for p = 1, 2, and ∞. Because of the norm-preserving discretization, we expect
cond1(A1,1(εδ)) = Θ(1), cond2(A1,2(εδ)) = Θ(δ), and cond∞(A1,∞(εδ)) = Θ(δ2)
since that is the behavior of the continous operators (Theorem 1). Similarly, we ex-
pect cond1(A2,1(εδ)) = Θ(δ2), cond2(A2,2(εδ)) = Θ(δ), and cond∞(A2,∞(εδ)) = Θ(1)
(from Theorem 2).

In Figs. 5.1 and 5.2, we plot numerical results for the family of functions εδ,
where δ = 100j, with j = 1, . . . , 100. For each εδ, we formed the system matrices for
an adaptive norm-preserving discretization of the domain [0, 2] as described above.
The lp condition numbers were computed by brute force (using the singular value
decomposition in MATLAB).

We see from the data that the condition numbers of the discrete operators do,
indeed, exhibit the scaling properties expected from our analysis of the continuous
operators. Note that the 1-norm-preserving scheme to discretize (2.4) and the ∞-
norm-preserving scheme to discretize (2.7) result in very well-conditioned matrices,
independent of the steepness of the internal layer.

5.2. Convergence behavior using GMRES. As discussed in section 4.2, it
is reasonable to ask how standard iterative schemes work when applied to lp-norm-
preserving discretizations. We use GMRES here, whose stability depends formally
on the l2 condition number of the system matrix. It is reasonable to expect that the
better conditioned systems (the 1-norm-preserving system for A1(ε) and the∞-norm-
preserving system for A2(ε)) will fare better.
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Fig. 5.1. lp condition numbers of A1,p(εδ) for p = 1 (left), p = 2 (center), and p = ∞
(right). The slope of the internal layer is approximately δ and the thickness of the internal layer is
approximately 1/δ.
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Fig. 5.2. lp condition numbers of A2,p(εδ) for p = 1 (left), p = 2 (center), and p = ∞ (right).

For these experiments, we solve the ODE (1.3), i.e.

∂

∂x

(
ε(x)

∂u

∂x

)
= f

subject to inhomogeneous Dirichlet conditions, u(a) = γa and u(b) = γb. If we let
l(x) = mx+ c be a linear function satisfying the boundary conditions, then v = u− l
satisfies homogeneous Dirichlet conditions and the ODE with a modificed right-hand
side:

∂

∂x

(
ε(x)

∂v

∂x

)
= f −mεx.

This problem can be addressed using one of the integral equations (2.4) or (2.7), from
which the solution to the original problem is u = v + l. Here, we consider f ≡ 1,
γa = 1 and γb = 2. We consider two types of functions ε(x) that contain multiple
internal layers by adding together several hyperbolic tangent functions, as in (5.1),
with multiple centers and δ = 500, as shown in Fig. 5.3. We refer to the left-hand
profile as a “double hill” and the right-hand profile as a “double well”.

Using adaptive refinement, we obtain linear systems (5.7) and (5.8) as described
above, for p = 1, 2, and ∞. We solve the systems using GMRES and record the
relative residuals for each step in Figs. 5.4 and 5.5. The l2 condition numbers of the
discrete operators are shown in Table 5.1.

Note that the l2 condition numbers for A1,1(ε) and A2,∞(ε) operators are the
smallest, as expected. Note also that these linear systems are solved much more
easily using GMRES. The other discretizations fail to reach the desired tolerance
(10−15) in a reasonable number of iterations.
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Fig. 5.3. The “double hill” (left) and “double well” (right) functions ε(x).
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Fig. 5.4. Convergence of GMRES for the “double hill” ε(x). The relative residual of the error
at each iteration is shown using the A1,p(ε) operator (left) and the A2,p(ε) operator (right).

6. Discussion. Our work in this paper was motivated by the observation that
boundary integral equations are extremely robust when solving problems of the type
(1.1) when ε is piecewise constant. In particular, a charge distribution on the dielec-
tric interface leads to well-conditioned integral equations involving the single layer
potential [13, 14, 17, 24, 25]). That charge density, however, is not a smooth function
in the ambient space - it is a singular function supported on the interface alone.

In the variable coefficient case, setting the unknown to be σ = ∆u, as in (2.4),
corresponds to seeking the solution in terms of a volume charge distribution. As the
internal layer becomes steeper and steeper, the function σ(x) blows up, since it is
converging to a distribution and not a bounded function. One interpretation of the
L1 norm-preserving discretization is that, in the discontinuous limit, the l1-scaled
unknown approximates the strength of the δ-function along the steep interface, rather
than trying to sample the δ-function itself.

One concern with using the integral equation (2.4) is that we are only guaranteed
tight bounds for accuracy in L1, using the standard estimate

‖e‖1
‖x‖1 ≤ cond1(A1)

‖r‖1
‖b‖1
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Fig. 5.5. Convergence of GMRES for the “double well” ε(x). The relative residual of the error
at each iteration is shown using the A1,p(ε) operator (left) and the A2,p(ε) operator (right).

ε(x) A1,1(ε) A1,2(ε) A1,∞(ε) A2,1(ε) A2,2(ε) A2,∞(ε)
“Double Hill” 35.1453 979.052 86459.5 116010 978.240 31.1643
“Double Well” 33.1648 977.744 98620.1 147328 977.411 27.9858

Table 5.1
l2 condition numbers for the discretized A1,p(ε) and A2,p(ε) operators.

where x̃ is an approximate solution, e = x− x̃, and r = A1x̃− b is the residual. (This
estimate applies to invertible Fredholm equations of the second kind as well as to finite-
dimensional linear systems). Fortunately, the quantities of interest u, ux are computed
as integral functionals of σ using the representation (2.3) and are obtained with high
accuracy. The integral equation (2.7) can be discretized naively, corresponding, as
noted earlier, to norm-preservation in l∞. While in some respects simpler, derivative
data (ux) must then be computed numerically.

We are currently working on the extension of our analysis to higher-dimensional
problems, and will report on the performance of such solvers at a later date.

Appendix A. (Proof of Theorem 1.)

Without loss of generality, we prove the theorem in the case [a, b] = [0, 1]. Let
E ⊂ C1[0, 1] be a family of functions satisfying Property 1 with m and M as in
Definition 3.1. Let ε be an arbitrary function in E and let A1 be given by

A1σ(x) = (I +K1)σ(x) = σ(x) +
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy .

We now establish bounds for A1 as on operator on L∞[0, 1] ∩ C[0, 1]. To begin, we
note that |Gx(x, y)| is bounded by 1. Thus,

‖A1‖∞ = sup
‖σ‖∞=1

sup
x∈[0,1]

∣∣∣∣σ(x) +
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣
≤ 1 +

∥∥∥εx
ε

∥∥∥
∞
. (A.1)
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Let x∗ be a maximizer of |εx/ε| and define functions σn by

σn(y) =

 1 if y ≤ x∗
1− 2n(y − x∗) if x∗ < y < x∗ + 1/n

−1 if y ≥ x∗ + 1/n
.

These functions are continuous and approximate the sign of Gx(x∗, y). A straightfor-
ward computation shows that

‖A1‖∞ = sup
‖σ‖∞=1

sup
x∈[0,1]

∣∣∣∣σ(x) +
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣
≥ sup
x∈[0,1]

∣∣∣∣σn(x) +
εx(x)
ε(x)

∫
Gx(x, y)σn(y) dy

∣∣∣∣
≥
∣∣∣∣εx(x∗)
ε(x∗)

∣∣∣∣ (∫ |Gx(x∗, y)| dy − 2
n

)
− σn(x∗)

≥
∥∥∥εx
ε

∥∥∥
∞

(
1
4
− 2
n

)
− 1

so that

‖A1‖∞ ≥ 1
4

∥∥∥εx
ε

∥∥∥
∞
− 1 . (A.2)

We note that A−1
1 is given by

A−1
1 g(x) = (I −R1)g(x) = g(x)− εx(x)

ε(x)2

∫ x

0

g(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
g(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

 .

It is straightforward to see that

‖A−1
1 ‖∞ = sup

‖g‖∞=1

‖(I −R1)g‖∞

≤ 1 + sup
‖g‖∞=1

sup
x∈[0,1]

∣∣∣∣∣∣εx(x)
ε(x)2

∫ x

0

g(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
g(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

∣∣∣∣∣∣
≤ 1 +

∥∥∥εx
ε

∥∥∥
∞

2
m
‖ε‖1

≤ 1 +
2M
m

∥∥∥εx
ε

∥∥∥
∞
. (A.3)

Again, let x∗ be a maximizer of |εx/ε| and let mε be the minimum of ε on [0, 1]. We
define the function gε as follows

gε(x) =


mε/ε(x) if x ≤ x∗/2
−mε/ε(x) if x∗/2 < x ≤ x∗
mε/ε(x) if x∗ < x ≤ (1 + x∗)/2
−mε/ε(x) if (1 + x∗)/2 < x ≤ 1

.

The function gε is such that the integral
∫ x

0
gε(t)ε(t) dt is zero at x = x∗, 0, and 1

and positive otherwise. Let gn be continuous functions which satisfy ‖gn‖∞ = 1 and
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converge pointwise to gε. A few straightforward computations and an application of
the dominated convergence theorem yield

‖A−1
1 ‖∞ = sup

‖g‖∞=1

‖(I −R1)g‖∞
≥ lim
n→∞

‖(I −R1)gn‖∞
≥ lim
n→∞

|R1gn(x∗)| − 1

≥
∣∣∣∣εx(x∗)
ε(x∗)2

∣∣∣∣ lim
n→∞

∫ 1

0
1
ε(s)

∫ s
0
gn(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

−
∣∣∣∣εx(x∗)
ε(x∗)2

∣∣∣∣ lim
n→∞

∫ x∗

0

gn(t)ε(t) dt− 1

=
∣∣∣∣εx(x∗)
ε(x∗)2

∣∣∣∣
∫ 1

0
1
ε(s)

∫ s
0
gε(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

− 1

≥ 1
M

∥∥∥εx
ε

∥∥∥
∞

mεm

8M
− 1

≥ m2

8M2

∥∥∥εx
ε

∥∥∥
∞
− 1 . (A.4)

We next establish bounds for A1 as an operator on Lp[0, 1], for 1 ≤ p < ∞. For
the upper bound on the forward operator, we have

‖A1‖p = sup
‖σ‖p=1

‖(I +K1)σ‖p

≤ 1 + sup
‖σ‖p=1

(∫ ∣∣∣∣εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣p dx)1/p

≤ 1 + sup
‖σ‖p=1

∥∥∥∥∣∣∣∣εx(x)
ε(x)

∣∣∣∣p∥∥∥∥1/p

1

∥∥∥∥∫ |Gx(·, y)σ(y)|p dy
∥∥∥∥1/p

∞

≤ 1 +
∥∥∥εx
ε

∥∥∥
p
. (A.5)

To establish a lower bound for the forward operator, we need to construct a
suitable density σ. For an arbitrary ε in E , it is clear that

∥∥∥εx
ε
· 1J
∥∥∥
p
≤ 1

2

∥∥∥εx
ε

∥∥∥
p

for at least one of the subintervals J = [0, 1/2] or J = [1/2, 1]. Note that any density σ
is the second derivative of a function u with homogeneous Dirichlet boundary values.
In particular, u′(x) =

∫
Gx(x, y)σ(y) dy. As a result, the function u′ integrates to zero

(since u(1) = u(0) = 0). This observation permits us to build densities σ with desired
properties. In particular, we’d like a density σ such that u′(x) =

∫
Gx(x, y)σ(y) dy is

bounded below outside of the interval J on which εx/ε satisfies the above inequality.
Consider the case J = [0, 1/2], the other case can be handled similarly. We choose u′

to be of the form

u′(x) =
{
x− 3

8 for x ≤ 1
2

1
8 for 1

2 ≤ x ≤ 1 ,
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which integrates to zero and is equal to 1/8 on [0, 1] \ J . The corresponding density
σε is piecewise constant:

σε(x) =
{

1 for x ≤ 1
2

0 for 1
2 ≤ x ≤ 1 .

It follows that ‖σε‖p = 1
21/p . This density is used to establish the lower bound for the

forward operator as follows

‖A1‖p = sup
‖σ‖p=1

‖(I +K1)σ‖p

≥ sup
‖σ‖p=1

(∫ ∣∣∣∣εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣p dx)1/p

− 1

≥ 1
‖σε‖p

(∫ ∣∣∣∣εx(x)
ε(x)

∫
Gx(x, y)σε(y) dy

∣∣∣∣p dx)1/p

− 1

≥ 1
21/p

∥∥∥∥εxε · 1
8
· 1[0,1]\J

∥∥∥∥
p

− 1

≥ 1
8 · 21/p

∥∥∥εx
ε
· 1[0,1]\J

∥∥∥
p
− 1

≥ 1
16

∥∥∥εx
ε

∥∥∥
p
− 1 . (A.6)

We now establish bounds for the inverse operator. Let 1 ≤ p <∞ and 1/p+1/q =
1, with the usual convention q =∞ for p = 1. Then

‖A−1
1 ‖p = sup

‖g‖p=1

‖(I −R1)g‖p
≤ 1 + sup

‖g‖p=1

‖R1g‖p

≤ 1 + sup
‖g‖p=1

∫ 1

0

∣∣∣∣∣∣εx(x)
ε(x)2

∫ x

0

g(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
g(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

∣∣∣∣∣∣
p

dx

1/p

≤ 1 +
∥∥∥(εx
ε2

)p∥∥∥1/p

1
sup
‖g‖p=1

 sup
x∈[0,1]

∣∣∣∣∣∣
∫ x

0

g(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
g(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

∣∣∣∣∣∣
p1/p

≤ 1 +
∥∥∥εx
ε2

∥∥∥
p

1 +

∫ 1

0
1
ε(s) ds∫ 1

0
1
ε(s) ds

 sup
‖g‖p=1

∫ 1

0

|g(t)ε(t)| dt

≤ 1 + 2
∥∥∥εx
ε2

∥∥∥
p

sup
‖g‖p=1

‖gε‖1

≤ 1 + 2
∥∥∥εx
ε2

∥∥∥
p
‖ε‖q

≤ 1 +
2M
m

∥∥∥εx
ε

∥∥∥
p
. (A.7)
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To establish the lower bound for A−1
1 we need a suitable right-hand side g. Let

J be as above and ξ its midpoint. We define a function gε as follows:

gε(x) =


0 if x ≤ ξ − 1/4

1
ε(x) if ξ − 1/4 < x ≤ ξ
− 1
ε(x) if ξ < x ≤ ξ + 1/4

0 if x > ξ + 1/4

.

It is easy to see that the partial integral of gε(t)ε(t) is given by a hat function with
height 1/4 on the subinterval J :

∫ x

0

gε(t)ε(t) dt =


0 if x ≤ ξ − 1/4

x− ξ + 1/4 if ξ − 1/4 < x ≤ ξ
ξ − x+ 1/4 if ξ < x ≤ ξ + 1/4

0 if x > ξ + 1/4

.

It then follows that∫ 1

0

1
ε(s)

∫ s

0

gε(t)ε(t) dt ds ≥ 2
M

∫ 1
4

0

t dt =
1

16M
.

Using this right-hand side, we have

‖A−1
1 ‖p = sup

‖g‖p=1

‖(I −R1)g‖p
≥ sup
‖g‖p=1

‖R1g‖p − 1

≥ 1
‖gε‖p

∫ 1

0

∣∣∣∣∣∣εx(x)
ε(x)2

∫ x

0

gε(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
gε(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

∣∣∣∣∣∣
p

dx

1/p

− 1

≥ m
∫

[0,1]\J

∣∣∣∣∣∣εx(x)
ε(x)2

∫ x

0

gε(t)ε(t) dt−
∫ 1

0
1
ε(s)

∫ s
0
gε(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

∣∣∣∣∣∣
p

dx

1/p

− 1

= m

∫
[0,1]\J

∣∣∣∣∣∣εx(x)
ε(x)2

∫ 1

0
1
ε(s)

∫ s
0
gε(t)ε(t) dt ds∫ 1

0
1
ε(s) ds

∣∣∣∣∣∣
p

dx

1/p

− 1

≥ m

M

∥∥∥εx
ε
· 1[0,1]\J

∥∥∥
p

1
16M

− 1

≥ m

32M2

∥∥∥εx
ε

∥∥∥
p
− 1 . (A.8)

Combining the bounds (A.1) through (A.8), we see that there exist constants C ′1
and C ′2 — depending only on m and M — such that

C ′1

∥∥∥εx
ε

∥∥∥
p
− 1 ≤ ‖A1‖p ≤ C ′2

∥∥∥εx
ε

∥∥∥
p

+ 1

C ′1

∥∥∥εx
ε

∥∥∥
p
− 1 ≤ ‖A−1

1 ‖p ≤ C ′2
∥∥∥εx
ε

∥∥∥
p

+ 1 .

Observing that condp(A1) ≥ 1, we then have that there are constants C1 and C2 —
depending only on m and M — such that
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C1

∥∥∥εx
ε

∥∥∥2

p
≤ condp(A1) ≤ C2

∥∥∥εx
ε

∥∥∥2

p
+ 1 ,

which completes the proof.
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