
An adaptive fast multipole accelerated Poisson solver for complex

geometries

T. Askham, A.J. Cerfon

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

Abstract

We present a fast, direct and adaptive Poisson solver for complex two-dimensional geome-
tries based on potential theory and fast multipole acceleration. More precisely, the solver
relies on the standard decomposition of the solution as the sum of a volume integral to
account for the source distribution and a layer potential to enforce the desired boundary
condition. The volume integral is computed by applying the FMM on a square box that
encloses the domain of interest. For the sake of efficiency and convergence acceleration,
we first extend the source distribution (the right-hand side in the Poisson equation) to
the enclosing box as a C0 function using a fast, boundary integral-based method. We
demonstrate on multiply connected domains with irregular boundaries that this contin-
uous extension leads to high accuracy without excessive adaptive refinement near the
boundary and, as a result, to an extremely efficient “black box” fast solver.

Keywords: Poisson equation, fast multipole method, quadrature by expansion, integral
equations

1. Introduction

The solution of the Poisson equation is a critical task in many areas of computational
physics. The corresponding solvers need to be able to handle complex, multiply connected
geometries, to be fast, adaptive, and to yield high order accuracy. Speed is of particular
importance when the Poisson equation is part of a larger system of equations or in the
inner loop of an optimization process. And since the physical quantity of interest is often
the gradient of the solution, rather than the solution itself [39, 47, 12, 38, 31], partial
derivatives of the solution must be computable with high accuracy as well.

Integral equation techniques have the potential to address all the challenges mentioned
above. Complex geometries may be handled by decomposing the solution to Poisson’s
equation as the sum of a particular solution v that does not satisfy the proper boundary
condition in general, plus a homogeneous solution uH that solves Laplace’s equation and
is chosen so that the full solution u = v + uH satisfies the proper boundary condition.
Fast and accurate solvers can be designed based on this construction. Indeed, several
efficient and accurate integral equation based schemes exist to compute the solution of
Laplace’s equation on complex geometries [23, 5, 7], and fast and accurate evaluation of
the particular solution v on fully adaptive grids by use of the Fast Multipole Method
(FMM) has also been demonstrated for Poisson’s equation [15, 29]. Furthermore, in
integral equation formulations derivatives do not have to be computed through direct
numerical differentiation. Instead, one can analytically differentiate the kernels in the
integral representation of the solution, and thus obtain integral representations for the

Preprint submitted to Journal of Computational Physics September 6, 2018

derivatives of the solution as well. As a result the numerical error for the derivatives
often converges at the same rate as the error for the solution itself [38, 29].

Remarkably, despite all the strengths described above, we are not aware of an integral
equation based Poisson solver for planar problems that combines all the features at once.
In [15, 19], grid adaptivity and FMM acceleration are demonstrated, but only simple
geometries are considered. In contrast, in [34], Poisson’s equation is solved for complex
geometries and with FMM-accelerated quadratures, but the solver relies on fast methods
for uniform grids [32, 33]. The purpose of this manuscript is to close this gap and
to present an adaptive, FMM-accelerated Poisson solver for complex geometries. We
achieve this in the following way. We embed the irregular domain Ω on which Poisson’s
equation needs to be solved in a larger square domain ΩB. We decompose the solution
to Poisson’s equation as u = v + uH , and compute the particular solution v on ΩB

with a fast and accurate solver for square domains [15]. In order to calculate v in this
way, we need to extend the source function f on the right-hand side of Poisson’s equation
beyond the domain Ω where it is originally given. We show that global function extension
for f , constructed by solving Laplace’s equation or a higher order partial differential
equation on the domain R2 \ Ω, leads to a robust, efficient and accurate algorithm for
the evaluation of v. This idea is very similar in spirit to the extension technique recently
presented by Stein et al.[46] for the immersed boundary method, but quite different in its
implementation. Our approach for computing uH is standard in its formulation [21], but
it relies on numerical tools developed recently for optimized performance. Specifically,
we represent uH as a layer potential whose density solves a second-kind integral equation.
We use generalized Gaussian quadrature [8, 9] to approximate the integrals, a fast direct
solver [25] to compute the density and an FMM accelerated quadrature by expansion
(QBX) algorithm [28] to evaluate uH inside Ω.

The structure of the article is as follows. In Section 2 we present our formulation
for the solution to Poisson’s equation, which is based on standard potential theory. We
stress its computational challenges, which are then addressed in the following sections.
In section 3, we describe an efficient and accurate algorithm for the evaluation of the
particular solution v and its derivatives in a square box. While this algorithm plays
a central role in our approach to the problem, the section is relatively brief because
our solver relies on an implementation of the algorithm and techniques that have been
discussed in detail elsewhere [15, 29]. In section 4, we explain how we use a global function
extension algorithm in combination with a box Poisson solver for the computation of the
particular solution v on the whole square domain ΩB. This is a key element of our solver,
which allows us to deal with complex geometries in an efficient manner. To illustrate
the method, we focus on a C0 global function extension for simplicity. As we will show,
for such extensions the super-convergence property of integral equation based schemes
mentioned above, in which the error in the derivatives and the solution converge at
the same rate, does not hold. We explain the reason for this discrepancy and discuss
what is required for a global function extension method to achieve super-convergence
in Sections 4.1 and 5.4. In Section 5, we present our numerical method for calculating
the homogeneous solution uH , as well as the function extension. Both are expressed
as layer potentials and are computed in very similar ways. In Section 6 we study the
performance of our new solver for two Poisson problems on a multiply connected domain.
We summarize our work in Section 7 and suggest directions for future work.

2

2. The Potential Theoretic Approach to Poisson’s Equation

In this article, we consider the solution u to Poisson’s equation with Dirichlet boundary
conditions given by

∆u = f in Ω (1)

u = g on ∂Ω (2)

where Ω is a smooth planar domain, which may or may not be multiply connected. The
standard potential theory-based approach to the solution of (1– 2) proceeds as follows.
The first step is to calculate a particular solution, i.e. a function v which satisfies only
equation (1) but does in general not satisfy equation (2). A natural candidate for v is
given by

v(x) =

∫
Ω

G(x,y)f(y) dy, (3)

where G(x,y) is the free-space Green’s function for Poisson’s equation. For planar prob-
lems, G(x,y) = − log(||x− y||)/2π. This is the situation we will consider in this article.
Once v has been computed, the second step is to compute a homogeneous solution with
appropriate boundary conditions. Specifically, one solves the following Dirichlet problem

∆uH = 0 in Ω (4)

uH = g − v|∂Ω on ∂Ω. (5)

The solution to (1–2) is then the sum, u = v + uH . There are many options for the
numerical implementation of these two steps and we will not attempt to provide an
exhaustive review of them here. Instead, we focus on our new approach, which is designed
to address situations for which the domain Ω may be irregular and where derivatives of the
solution are also required with high accuracy. The purpose of this section is to give a short
overview of our approach. This overview is divided into two subsections: subsection 2.1
concerns the computation of v, and subsection 2.2 describes the computation of uH . The
presentation in these two subsections is meant to give a general idea of our numerical
scheme, and is brief on purpose. We provide detailed descriptions of our numerical
methods to calculate of v and uH in sections 3 and 4 for v, and section 5 for uH .

2.1. Computing the particular solution

There are two challenges associated with the evaluation of the particular solution v
through the integral (3). First, accurate quadratures must be used in order to handle the
logarithmic singularity. Second, given a quadrature rule, the näıve numerical approach
to computing (3) would require O(N2) work for a domain with N discretization nodes.
It is now well known that the computational work can in fact be reduced to O(N) via
the fast multipole method [11]. Furthermore, for a fixed domain Ω, the quadrature rules
for a weakly singular kernel G(x,y) can be precomputed using an adaptive, brute-force
procedure [17]. As a result, there exist particularly efficient O(N) algorithms, including
optimized versions of the FMM [15], to compute the integral (3) for problems specified
on a box. We choose such an algorithm for our solver, and provide some details of this
type of method in Section 3.

3

For irregular domains Ω, however, the situation is quite different. The calculation of
appropriate quadratures is much more difficult and fewer optimizations of the FMM are
available. A natural strategy, then, for irregular domains is to consider a larger, square
domain ΩB containing Ω and to instead compute

v(x) =

∫
ΩB

G(x,y)fe(y) dy, (6)

where fe is defined on all of ΩB, and constructed such that fe = f on Ω. One of the
main novelties of our work is to compute fe via global function extension: fe restricted
to R2 \ Ω is the solution of an elliptic partial differential equation with Dirichlet data
fe = f on ∂Ω.The PDE is solved with a standard integral equation representation. We
elaborate on this idea in Section 4.

Remark 1. It should be noted here that the solution provided by any Poisson solver is a
valid particular solution, though it will not necessarily be equal to the one given by (3).
This includes, in particular, the solutions produced by FFT-based solvers for rectangular
and circular domains, which are very fast in terms of work per grid point. The method
of [34] uses such a particular solution, computed via Buneman’s method [10] and the
modified stencils developed in [32]. A recent paper, [49], offers an alternative FFT-based
algorithm for evaluating the particular solution on uniform grids. By regularizing the
Fourier transform of the Green’s function, the method is able to utilize the FFT to evaluate
the convolution (3) rapidly and with spectral accuracy on a uniform grid. We have chosen
the algorithm of [15] because of its facility with adaptive grids, but much of the discussion
of this paper would also apply to adapting the algorithm of [49] for use with irregular
domains. To demonstrate the efficacy of the algorithm of [15], we compute an example
on a highly-adaptive grid in Section 6.

2.2. Computing the homogeneous solution

A standard approach to the solution of Laplace’s equation is to represent the solution
uH as a layer potential with unknown density µ on the boundary. The representation
should be chosen so that imposing the boundary conditions results in an invertible, second
kind integral equation (SKIE) for the density on the boundary. This is a well-studied area
and there exist appropriate integral representations for multiply connected domains [37,
22], unbounded domains [21], and for situations with other types of boundary conditions
[36]. Further references can be found in the previously cited papers, and we recommend
[21, 4] for very clear treatments of this topic.

Once a suitable representation for uH is chosen, the discretization of the problem is
then simply a matter of quadrature for the resulting SKIE. In general, the integral kernel
may be singular and the choice of quadrature requires attention [1, 27, 28, 23, 8, 9]. Once
discretized, there are many tools available for the fast solution of the resulting linear
system, which we briefly discuss in Section 5. For this article, we choose a direct method
[25] that is optimized for the type of problems considered here.

After the density σ is computed, the solution uH can be evaluated in the domain.
This step is trivially direct but it is not without its difficulties. With N discretization
points in the domain and M discretization points on the boundary, näıve computation
of the necessary integrals would require O(MN) work. This work can be reduced to
O(M + N) with the FMM. Because the integral kernel of the solution representation is
nearly singular for discretization points near the boundary, computing the potential uH

4

to high accuracy at such points requires special quadrature schemes . Such schemes have
been developed recently [23, 28], and for our solver we choose to rely on the quadrature
by expansion method (QBX) [28], which we also briefly discuss in section 5. In two
dimensions, the scheme of [23] would likely offer better performance than that of [28].
Indeed, the method of [23] has been shown to be effective for highly irregular geometries
[36]. We have chosen the quadrature by expansion framework because it applies to a
large class of integral kernels and extends readily to three dimensions.

3. Box Codes

This section reviews relevant features of the algorithm of [15], which is the original
“box code”, and which we have implemented in our solver. By “box codes”, we mean a
class of fast solvers which are used to evaluate integrals of the form

V f(x) =

∫
Ω

G(x,y)f(y) dy , (7)

where the integral kernel G(x,y) is a translation invariant Green’s function, the domain
Ω is a box, and f(y) is a given density. We take G(x,y) = − log ‖x − y‖/2π in what
follows.

3.1. Outline of a box code

As in all fast multipole methods, a FMM-based box code is based on a hierarchical
division of space. Specifically, the domain is taken to be the root box (level 0) of a quad-
tree. The finer levels are obtained by subdividing boxes from the previous level into four
equal parts. After a box is subdivided, the four resulting boxes on the next level are its
children. The quad-tree for a box code is thus fairly typical for an FMM. The primary
distinction of a quad-tree as used in a box code is that it is typically a level restricted
tree, i.e., adjacent leaf boxes are required to be no more than one level apart in the tree
hierarchy.

When computing (7), a choice has to be made as to how the function f is represented
on each leaf box of the quad-tree. The standard choice, as in [15], is to represent f by
collocation points (for monomials, Chebyshev polynomials, etc) on each leaf box, using
the same points scaled for each level. Then, a reasonable subdivision criterion for a box
is whether or not the function f is well approximated by its interpolant up to a given
tolerance on that box. This criterion makes a box code an adaptive method, with the
order of accuracy determined by the order of the polynomial approximation on each box.

After the quad-tree is formed, we have that Ω = ∪jBj where the Bj are leaf boxes
and on each leaf box there is a polynomial pj which approximates the density f . Let f̃ ,
defined by setting f̃(x) = pj(x) for x ∈ Bj, be the approximation of f over the whole
domain. The box code proceeds to evaluate the potential V f̃(x), where the evaluation
points x are taken to be the collocation points of the polynomials pj. Let Vf̃(x) be
the computed values of V f̃(x). To evaluate the volume integral at other points in the
domain, we evaluate the polynomial which interpolates the values Vf̃(x) on each box.
We denote this piecewise polynomial function by ṽ. The distinction between ṽ and Vf̃
is subtle but necessary here. For the sake of speed, a box code only evaluates Vf̃ at the
collocation nodes. The operator V is approximated more or less exactly so the error is
determined by the interpolation error for f̃ . The values of ṽ incur further interpolation
error, which depends on the order of the interpolation on leaf boxes and the smoothness
of Vf̃ . We address the error analysis in more detail in Section 3.3.

5

For a quad-tree with N total collocation points, computing Vf̃ would require O(N2)
operations if done näıvely. This cost can be reduced to O(N) by using the fast multipole
method. In the context of this article, it is only necessary to describe the result of the
FMM. For a detailed account of the structure of the FMM, see [11, 26, 15].

Let Bj be a leaf box of the quad-tree with width h. The “near field” of Bj is defined to
be any leaf box whose interior intersects the interior of the box of width 3h centered at Bj.
The boxes which are not in the near field of Bj are said to be in the “far field.” Because the
boxes in the far field of Bj are separated from Bj by a box of at least the same size as Bj,
these boxes are said to be “well separated.” Let F(Bj) = {i : Bj is in the far field of Bi}
be the set of leaf boxes for which Bj is well separated and Ωj = ∪i∈F(Bj)Bi be the union
over these leaf boxes. For a non-uniform tree, it is not necessarily the case that the boxes
of F(Bj) and the far field of Bj are the same. See Figure 1 for examples of these sets. In
O(N) time, the FMM computes functions Φj for each leaf box Bj which are expansions
(more precisely, the sum of a Taylor expansion and a number of multipole expansions)
approximating the influence of all leaf boxes in F(Bj) at any point in Bj, i.e. for any
x ∈ Bj

Φj(x) ≈
∫

Ωj

G(x,y)f̃(y) dy .

With Φj computed, it is possible to compute the volume integral (7) by directly adding
the influence of leaf boxes for which Bj is in the near field, i.e. for any x ∈ Bj

V f̃(x) ≈ Φj(x) +
∑

i 6∈F(Bj)

∫
Bi

G(x,y)f̃(y) dy.

where the second term on the right-hand side is evaluated by direct computation, using
a high order quadrature rule. This step is O(1) per point because the number of boxes
for which Bj is in the near field and the cost of evaluating Φj are bounded independent
of N . For a given precision εV , the computed values

Vf̃(x) = Φj(x) +
∑

i 6∈F(Bj)

∫
Bi

G(x,y)f̃(y) dy. (8)

satisfy

|Vf̃(x)− V f̃(x)| ≤ εV ‖f̃‖L1 .

To achieve this bound for smaller values of εV , the FMM uses higher-order expansions to
approximate Φj. See [18] for more on the error analysis of the FMM.

While O(N) is indeed optimal in terms of complexity, the numerical scheme presented
in [15] is particularly fast in terms of work per gridpoint. For far field interactions, the
speed is due in part to the fact that the translation of multipole expansions is diagonalized
through the use of plane wave expansions, see [15] and [26] for details. For near field
interactions, the speed is due to the use of precomputed tables. Because the tree is
level-restricted, there are a limited number of near field interactions possible, up to scale.
Therefore, if the possible interactions are stored for a unit box, the influence of any box
on a box in its near field can be computed at the cost of a small matrix-vector multiply.

6

F

F

F

F

F

F

F

F

F

F

F

F

N N

N B

N N

F F

N F

N F

N

*

*

*

*

* * *

B

* *

*

*

Figure 1: In the figure on the left, the leaves of a quad-tree are shown and the boxes in the
near field of the box B are marked with an N while the boxes in the far field of B are marked
with an F . The same quad tree is shown on the right and the boxes for which B is in the far
field are marked with an asterisk (*), these boxes being in F(B).

3.2. Derivatives of the potential

In many physical applications, the derivatives of the volume potential V f(x) are the
quantities of interest, instead of V f(x) itself. Once the values of the potential Vf̃ are
computed, one could differentiate the piecewise polynomial function, ṽ, which interpo-
lates the potential on each leaf box to obtain an approximation of the derivatives. This
computation results in derivative values which have an order of accuracy that is one less
than the order of accuracy for the potential.

Instead, the derivatives can be computed by recognizing that they are given by another
volume integral, e.g.

∂x1V f(x) =

∫
Ω

∂x1G(x,y)f(y) dy . (9)

In fact, the volume integral for the derivatives can be computed alongside the evaluation
of the volume integral for the potential with modest impact on the run time. As in the
case of computing the potential, the near-field interactions can be calculated making use
of precomputed tables. The far-field interactions can be computed by differentiating the
local expansion for the far-field, i.e. by differentiating Φj(x), which is typically a much
higher order approximation than the order of the interpolation on leaf boxes. The result
of computing the derivatives of the solution with this approach is that the derivatives
display the same convergence rate as the potential. For the calculations presented in this
article, the authors have implemented such a scheme. A similar approach to computing
derivatives was taken in [29].

3.3. Error analysis for smooth f

As above, let f̃ denote the piecewise polynomial approximation to f for a given tree
and let Vf̃ denote the computed value of V f̃ , as defined in equation (8). Suppose that the
fast multipole method is applied with precision εV and that the local interaction tables
are computed to at least that precision. Then, the error in V f̃ at a collocation node x
has the following bound:

|V f̃(x)− Vf̃(x)| ≤ εV ‖f̃‖1 . (10)

7

That is, the values of V f̃(x) are computed at the collocation nodes with an error that
depends only on the truncation order of the fast multipole method. It then follows that
the total error at any given collocation node x is bounded by

|V f(x)− Vf̃(x)| ≤ |V f̃(x)− Vf̃(x)|+ |V (f̃ − f)(x)| ≤ εV ‖f̃‖1 + CΩ‖f̃ − f‖∞ , (11)

for a constant CΩ which is independent of f and given by

CΩ = max
x∈Ω

∫
Ω

|G(x,y)| dy . (12)

The bound (11) provides an a priori estimate of the accuracy of the solution which de-
pends only on the values of the data f . This is useful when designing adaptive refinement
strategies as one can simply check whether f is well approximated on each leaf in the tree.
On a uniform tree, we see that the order of accuracy of the overall scheme depends on
the order of accuracy of the local polynomial approximation to f on leaf nodes. Finally,
we note that (11) only depends on the fact that V is a bounded operator from L∞ to
L∞. In particular, it is clear that (11) holds analogously for ∇V and that on a uniform
tree we should see the same order of accuracy for the potential and gradient values (this
is sometimes referred to as “super-convergence”).

4. Box codes for irregular domains

Perhaps the most natural idea to compute a particular solution v to Poisson’s equation
for an arbitrary irregular domain by using a box code is as follows. Suppose Ω is the
irregular domain and ΩB is a box such that Ω ⊂ ΩB. Then, a particular solution on Ω
can be computed as in (6), so long as an extension fe on ΩB \Ω of the right-hand side f
is given.

In many cases of practical interest, a smooth or continuous extension fe of f is readily
available. The density f may for example describe a compactly supported distribution of
electric charges which smoothly goes to zero on the boundary of Ω. Likewise, the magne-
tohydrodynamic equilibrium of a plasma confined in a tokamak is given by a semilinear
Poisson equation in which the right-hand side f smoothly goes to zero on the boundary
of Ω in most situations [38, 31]. In such cases, fe ≡ 0 on ΩB \Ω is a natural and satisfying
choice.

In the general case, however, fe does not have an obvious physical meaning, and the
extension fe is constructed as a purely mathematical artifice required by the box solver.
The problem of specifying a function fe such that fe = f on Ω is extremely open; we
narrow it by looking for an extension fe that is favorable in terms of the efficiency and
accuracy of the box code.

4.1. Error analysis for non-smooth densities

To motivate our construction of fe, we first perform a heuristic but more detailed
analysis of the error bound (11) for densities fe which are not necessarily smooth on the
box ΩB. Using the standard multi-index notation, let ∂α = ∂α1

x1
∂α2
x2

and |α| = α1 + α2.
Then the differentiability class Ck(A) of a domain A is defined to be the set of functions
g such that ∂αg is continous for each α with |α| ≤ k, with the convention that C−1(A) is
the set of bounded functions which are possibly discontinuous. For a density fe ∈ Ck(ΩB)
and a uniform tree with leaf boxes of width h, let f̃e be the numerical approximation as

8

in the previous section, using interpolants of order p (degree p−1) on each box. Standard
error estimates imply that

‖fe − f̃e‖∞ = O(hm) , (13)

where m = min(k, p). If the additional assumption is made that fe is piecewise Ck+l for
some l ≥ 1 (e.g., for a domain A ⊂ ΩB, the density fe ∈ Ck+l(A) and fe ∈ Ck+l(ΩB \A))
and globally Ck (so that any discontinuities in the k + 1st derivative occur across ∂A)
then the approximation order is improved to m = min(k + 1, p), see, inter alia, [13].

These bounds suggest that the scheme should have O(1) error for a piecewise smooth
density which is discontinuous across some boundary. However, in practice the observed
convergence rate is faster, even for the derivatives of V fe. The reason for this is that the
bound (11) only makes use of the fact that V and its derivatives are bounded on L∞. It
does not take into account the fact that they are given by weakly singular integrals. One
could thus seek a tighter bound for the error |V fe(x)−V f̃e(x)|, but with our construction
of the solution given by Equations (3), (4) and (5), it suffices to see how good of a
particular solution V f̃e is. For this purpose, let x be contained in a box Bj and let Ωj

denote the union over all boxes for which Bj is in the far-field, as already defined in
Section 3.1. We can write

V f̃e(x) =

∫
Ω

G(x,y)f̃e(y) dy (14)

=

∫
Ω\Ωj

G(x,y)f̃e(y) dy +

∫
Ωj

G(x,y)f̃e(y) dy . (15)

The contribution to V f̃e(x) from the second term is harmonic. The contribution from the
first term is the relevant one regarding the quality of V f̃e as a particular solution, since
the particular solution is only defined to within the addition of a homogeneous solutions.
Let h be the side length of the box Bj. If we consider the error without the far-field
contribution, we have

∣∣∣∣∣
∫

Ω\Ωj

G(x,y)f̃e(y) dy −
∫

Ω\Ωj

G(x,y)fe(y) dy

∣∣∣∣∣ ≤ ‖f̃e − fe‖∞
∫

Ω\Ωj

|G(x,y)| dy(16)

= O(h2| log h|)‖f̃e − fe‖∞ . (17)

For the derivative values we have the analogous bound

∣∣∣∣∣
∫

Ω\Ωj

∇G(x,y)f̃e(y) dy −
∫

Ω\Ωj

∇G(x,y)fe(y) dy

∣∣∣∣∣ ≤ ‖f̃e − fe‖∞
∫

Ω\Ωj

|∇G(x,y)| dy(18)

= O(h)‖f̃e − fe‖∞ . (19)

There are two main conclusions from the preceding analysis. The first conclusion is
the intuitive result that the smoother fe is the better the approximation of the particular
solution. The more interesting conclusion is that fe may not need to be quite as smooth
as we may have initially expected. Specifically, in our implementation, we use 4th order
interpolants on each leaf box. Suppose we discretize the domain with a uniform tree and

9

leaf boxes of side length h. For a piecewise smooth density fe which is discontinuous, the
above bounds imply (nearly) 2nd order accuracy in the values of the particular solution
and 1st order accuracy in the gradient. Similarly, for a piecewise smooth density fe
which is continuous, they imply (nearly) 3rd and 2nd order accuracy, respectively. These
bounds are consistent with our numerical results, as we demonstrate in Section 6.

Finally, note that (17) and (19) also imply that we do not expect to observe “super-
convergence” for piecewise smooth densities unless they are of sufficient smoothness glob-
ally. While super-convergence would be a desirable property, we have found that adap-
tive refinement strategies can be advantageously used to obtain the desired high-accuracy
(though not necessarily high-order accurate) values for derivatives of the potential. We
present these numerical results in more detail in Section 6.

4.2. Global function extension

In previous attempts to use box codes for irregular domains, two main extrapolation
techniques were used. The first, which we call “extrapolation by zero”, simply sets the
density fe to be zero outside the domain[15]. In this case, the function fe is as smooth
as the original density f inside the domain and trivially smooth outside the domain.
Therefore, the estimates for piecewise smooth functions apply and we see that the scheme
should converge with a rate O(h2| log h|) for a uniform tree. The reader may keep in mind
that for such situations, a box code relying on an adaptive tree is more efficient in terms
of degrees of freedom than a code using a uniform tree. Even if so, adaptive refinement
for functions with a discontinuity requires trees with a large number of refinement levels
and therefore a large number of grid points. This can make the “extrapolation by zero”
approach computationally costly. The second extrapolation method uses local polynomial
approximations to f to extrapolate f outside the domain over short distances [30]. A
major limitation of this method is that it results in a smooth fe for individual leaf boxes
but has no guarantees of smoothness across boxes. Since there can be discontinuities in
fe across boxes near the original domain, the computed potential V fe may be unresolved
on those boxes. This issue seems to be inherent in local extrapolation methods. That
is why we seek out a global extrapolation method which improves on the näıve global
“extrapolation by zero” approach, in terms of both speed and accuracy.

The global extrapolation method we adopt is similar in spirit to the one recently
proposed in [46] in a different context, and can be explained in a few words. Let w solve
the PDE

∆w = 0 in R2 \ Ω
w = f on ∂Ω

, (20)

subject to the condition that w(x) is bounded as ‖x‖ → ∞. Then, the function fe defined
by

fe(x) = f(x) for x ∈ Ω
fe(x) = w(x) for x ∈ ΩB \ Ω

(21)

is globally continuous, as smooth as f on Ω, and smooth on ΩB \ Ω. While this may
at first seem like a computationally expensive way to extrapolate f , the analytical and
numerical machinery required to solve this problem is in fact the same as that required
to solve the harmonic problem (4)–(5), which is used to enforce the boundary condition
of the original Poisson problem ((1)–(2)).

10

Note that the method can be generalized to compute globally Ck extrapolations of f
by solving polyharmonic equations. For example, a C1 extrapolation can be computed
by solving the following biharmonic problem:

∆2w = 0 in R2 \ Ω
w = f on ∂Ω

∂νw = ∂νf on ∂Ω
w = 0 on ∂Ωe

∂νw = 0 on ∂Ωe

, (22)

where Ωe is some domain containing Ω and ∂ν denotes differentiation in the direction of
the unit normal ν at the given point of the boundary. Once w is computed, fe is as defined
in the continuous case. While the methods for Equation (22) are not as well developed
as in the Laplace case, there exist similar potential-theory based integral equations and
fast solution methods for the solution of the biharmonic problem. See, for instance, P.
Farkas’ PhD thesis [16]. There are two main reasons to not consider extrapolations based
on polyharmonic equations of higher order than the biharmonic equation: (1) very few
numerical tools have been developed for such equations and (2) the equations require to
provide high order derivatives of the data f in the direction normal to the boundary,
which in most physical applications are not readily available, and can be challenging
to compute with high accuracy numerically, even when using integral equation based
methods [43].

For our numerical tests, and in the version of the code which will be available online,
only the harmonic expansion calculated by solving (20) is implemented. The details
of our implementation are given in 5 in parallel with the calculation of uH , since both
computations rely on the same mathematical and numerical tools.

5. Computing the homogeneous solution and the harmonic extension

In this section, we describe how we compute the homogeneous solution uH which
solves the harmonic problem ((4)–(5)). Since we use similar numerical techniques to
solve this problem and to compute the global function extension through (20), we will
also discuss the latter, and highlight the small differences between the two situations.

5.1. Layer potentials

Before we proceed, we should clarify what we mean by a multiply connected domain
and the normal direction to the boundary curve. Let Ω be an interior domain with
boundary ∂Ω. For a multiply connected domain, ∂Ω is given as the union over disjoint,
closed curves ∂Ω =

⋃l
i=0 Γi, with Γ0 corresponding to the outer boundary. The normal

direction on each component Γi is taken to be the direction pointing away from Ω and
is denoted by ν. To denote the normal at a specific point x, we use the notation ν(x).
For Γ0, this vector points to the exterior of the curve and for Γi, i = 1, . . . , l, this points
to the interior of the curve. To see a simple illustration of such a domain and its normal
vectors, see Figure 2 in Section 6.

We write both the homogeneous solution uH and the extension w of f in ΩB \ Ω as
layer potentials [21]. Specifically, for the homogeneous solution we write

uH(x) = Sµ(x) +Dµ(x) (23)

11

where µ is an unknown density, and

Sµ(x) =

∫
∂Ω

G(x,y)µ(y) dy , (24)

Dµ(x) =

∫
∂Ω

∂νyG(x,y)µ(y) dy (25)

with ∂νy denoting differentiation in the direction ν(y). The function Sµ(x) is known as
a single layer potential, and Dµ(x) is known as a double layer potential [21].

For the harmonic function extension, we write w as

w(x) = Dσ(x) +Wσ (26)

where σ is an unknown density, and

Wσ =

∫
∂Ω

σ(y) dy. (27)

Now, let Sµ(x0), Dµ(x0) and Dσ(x0) denote the restrictions of S and D to points x0

on the boundary ∂Ω, where the integrals are taken in the Cauchy principal value sense
when necessary. uH(x) and w(x) reach the following limiting values as x approaches a
point x0 on the boundary [21]

lim
x→x0 ,x∈Ω

uH(x) = g(x0)− ṽ(x0) = −1

2
µ(x0) + Sµ(x0) +Dµ(x0) (28)

and

lim
x→x0 ,x∈Ω

w(x) = f(x0) =
1

2
σ(x0) +Dσ(x0) +Wσ. (29)

(28) is a second kind integral equation (SKIE) for µ, and (29) an SKIE for σ.
At this point, we have the desired integral representations for uH and for w, and

equations for their associated densities. The representation (23) for uH has been used
in commercial software [48] and is known in the integral-equations community [22] but
the authors are unaware of any treatment of the Fredholm alternative as applied to the
resulting integral equation (28). We consider a proof of the invertibility of (28) to be
beyond the scope of this paper but note that the argument of Lemma 29 in [40] can be
modified to provide a proof of its invertibility, even on multiply-connected domains. The
invertibility of (29) is well-known [21].

We now discuss the numerical methods we chose to solve (28) and (29) and to evaluate
the integrals in (23) and (26).

5.2. Solving the second kind integral equations for the densities

In our solver, we discretize ∂Ω using panels of 16 scaled Legendre nodes. Our nu-
merical methods rely on the following simplifying assumptions concerning the boundary
∂Ω: (1) the boundary is Cn for some large n and (2) the panels are chosen fine enough
so that for source and target nodes on distinct, non-adjacent panels the integrals of the
layer potentials are computed to high precision using the standard Gaussian weights (the
“source” and “target” terminology is explained below). Note that there exist more com-
plex algorithms that would allow us to relax both assumptions, and their implementation
in our solver will be the subject of future work. To relax the first assumption, one could
use any of the methods described in [24, 4, 9, 45] to allow domains with corners. While

12

the second assumption is not necessarily much of a limitation on the types of domains
which can be handled by our solver, the fineness implied by this assumption can lead
to too great a computational burden for certain domains, such as domains in which the
boundary comes close to intersecting itself. The method of [20] provides a more efficient
approach for such cases.

Now, let ∂Ω be discretized into L panels using M = 16L total nodes and denote the
ith node by xi. Using generalized Gaussian quadrature for the interactions between nodes
on the same and adjacent panels and the standard, scaled Gaussian weights otherwise,
we obtain a Nyström discretization of (28) and (29):

g(xi)− ṽ(xi) = −1

2
µi +

M∑
j=1

(
G(xi,xj)µjω

s
i,j + ∂νjG(xi,xj)µjω

d
i,j

)
, (30)

f(xi) =
1

2
σi +

M∑
j=1

(
∂νjG(xi,xj)σjω

d
i,j + σjωj

)
(31)

where µi = µ(xi), σi = σ(xi), ∂νj denotes differentiation in the direction ν(xj), and the
ωsi,j, ω

d
i,j, and ωj correspond to integration weights. We note that the expressions above

are a slight abuse of notation as the Green’s function and its derivatives are undefined
when j = i. The true formula is more generally a function of the boundary and the
kernel but we find the above more edifying. In the current context, the relevant piece
of information is that there exist weights ωsi,j, ω

d
i,j, and ωj such that the quadratures

appearing in the second kind equations can be evaluated with high-order accuracy. For
a more detailed treatment of the generalized Gaussian quadrature framework, see [9]. In
the following sections, we will refer to the ωj, which are given by appropriately scaling
the standard Gauss-Legendre weights, as the smooth quadrature weights.

There exist many tools available for the fast solution of the linear systems (30) and
(31). There are iterative solution techniques, e.g. GMRES [44], which perform well for
linear systems discretized from SKIEs on simple domains. The computational cost of
such a scheme is typically dominated by a term of the order qT where q is the number of
iterations required to converge and T is the amount of work for a matrix-vector multiply.
For well-conditioned problems with M boundary nodes, typically q = O(1) and the cost
of T can be reduced to O(M) with an FMM. There are also fast-direct solution methods,
i.e., methods which construct, in O(M) or O(M logM) time, a representation of the
inverse of the system matrix which can be applied in O(M) or O(M logM) time. For
such direct methods, the cost of forming the representation of the inverse is often much
greater than that of the FMM, while the speed of applying the inverse, once computed,
is often faster than the FMM. Fast-direct solvers can be particularly useful for problems
in highly-irregular domains, in which the iteration count of an iterative solver may be
too high or unpredictable. They are also advantageous for cases in which several Laplace
problems need to be solved for a fixed domain, since the high initial cost only has to
be paid once. For our solver, we implemented the direct method developed by [25],
which is optimized for the type of problems considered here, and found that it gave very
satisfactory performance.

5.3. Evaluation of uH and w by quadrature by expansion

Once µ and σ are computed, we evaluate uH and w by direct computation of the
integrals (23) and (26). This step can at first appear complicated because the integral

13

kernels are near singular for the evaluation of points near the boundary of the domain.
We resolve the difficulty by computing the integrals for points near the boundary using
the quadrature by expansion (QBX) method. We will not present the fundamentals of the
QBX scheme here, since clear presentations for situations very closely related to the one
we encounter here can be found in [28, 6, 43, 3]. We will however stress two modifications
to the standard QBX scheme which we implemented in our solver. First, we accelerated
the evaluation of the layer potentials with the FMM (a similar but more sophisticated
acceleration scheme is presented in [41]). Second, we developed a variant of QBX which
allows, after precomputation of the field at a fixed number of points, the evaluation of
the field anywhere in the domain in O(1) time [3]. This is particularly convenient for the
evaluation of the function extension when we construct the adaptive tree, since the grid
points at which the values of the layer potential are desired may not be known a priori.

5.3.1. Explanation of the algorithm

Let us discuss these two modifications to the standard QBX method in more detail.
Consider, for example, the evaluation of the layer potential uH = Sµ + Dµ. We use
the notation as above for the discretization nodes xi, the smooth quadrature weights ωi,
and the boundary normals νi = ν(xi) of ∂Ω. Let ci be the QBX centers, located at a
distance ri from the boundary: ci = xi − riνi. In the QBX method, the potential u is
approximated by a power series in the disc of radius ri about ci, denoted by Bri(ci). For
any x in Bri(ci), we write

uH(x) ≈ Re

(
p∑
l=0

αl,i(z − ξ)l
)
, (32)

where z = x1 + ix2 and ξ = ci,1 + ici,2.
We will present a simple method for computing the QBX coefficients, αl,i, with FMM

acceleration. For points x which are sufficiently far from the boundary, the values of uH

can be evaluated with high accuracy using the smooth integration weights ωj, i.e. the
formula

uH(x) ≈
M∑
j=1

(
G(x,xj)µjωj + ∂νjG(x,xj)µjωj

)
(33)

is accurate for such points. Näıvely, the computational cost of evaluating the sum (33) is
O(MN) for N targets x. This sum can be computed at N targets with cost O(M +N)
using a standard FMM [18, 11, 26]. Therefore, if the coefficients αl,i can be recovered
from function evaluations of uH , they can be computed with FMM acceleration.

Let 0 < δ < 1 be given. Consider the integral of the power series approximation to
uH (32) about the circle of radius δri about ci. We have

1

2π

∫ 2π

0

uH (ci + δri(cos θ, sin θ)) dθ ≈ 1

2π
Re

(∫ 2π

0

p∑
l=0

αl,i (δri)
l eilθ dθ

)
= Re (α0,i) ,

(34)
where we have used the orthogonality properties of complex exponentials. Note that
Re (α0,i) is precisely what is needed to evaluate the first term in the expansion(32). By
similar reasoning, the coefficients αl,i can be recovered from the following integral on the

14

circle of radius δri about ci:

αl,i =
1

πδlrli

∫ 2π

0

uH (ci + δri(cos θ, sin θ)) e−ilθ dθ . (35)

The layer potential uH is smooth on the circle of radius δri, so the αl,i can be computed
with high order accuracy using the trapezoidal rule to discretize the integral (35). Let
MQBX equispaced points yi,j be placed on the circle ∂Bδri(ci). The values uH(yi,j) can
be computed accurately using the smooth quadrature weights for ∂Ω to approximate the
single and double layer potentials there, assuming that (1− δ)ri is large enough (this is
the closest that yi,j will be to the boundary). For sufficient sampling, MQBX should be
taken larger than 2p.

Once the coefficients are computed, the power series (32) can be used to approximate
the potential at targets which are close to the boundary. High accuracy can be obtained
when ri is sufficiently small.

With these preliminaries in place, the FMM-accelerated algorithm for the evaluation
of the potential at N targets ti can be described in the following steps:

• Place M centers at the points ci = xi − riνi.

• Define MQBX equispaced points yi,j for j = 1, . . . ,MQBX on the circle of radius δri
about each center ci.

• Call the FMM to evaluate uH at the targets ti and the points yi,j, where the layer
potentials are approximated using the smooth quadrature weights ωi. This is a
O(MMQBX +N) procedure.

• Compute the coefficients αl,i for each center as in (35), using the trapezoidal rule.
This takes O(MMQBX logMQBX) work for MQBX > 2p using the FFT.

• For each target which is within (1 − δ)ri of any boundary node xi, let cj be the
nearest QBX center. The smooth rule might not be accurate for this target, so
instead use the value given by the power series (32) about ci. The cost for this is
O(p) per target.

The scheme presented above is satisfactory if the targets ti are all known in advance.
However, when constructing the adaptive tree, the potential associated with the function
extension may have to be evaluated at new targets t. For the new targets which are close
to the boundary, the potential can be computed using the expansion about the nearest
QBX center. For the targets further from the boundary, we avoid calling the FMM again
to compute the potential there. Instead, we store the multipole and local expansion
coefficients computed for all boxes in the hierarchy during the initial call to the FMM.
The values of the potential at the new targets t can then be evaluated in O(pFMM) work
for each target, where pFMM is the order of the multipole and local expansions in the
FMM [3].

5.3.2. Choosing the QBX parameters

In the above, we have avoided the key topic of how to select ri, the radius of the QBX
expansion. For the sake of argument, we will assume for now that δ ≤ 3/4. This must
be done to balance two competing concerns: (1) that (1− δ)ri ≥ ri/4 is sufficiently large

15

so that uH(yi,j) can be computed accurately using the smooth quadrature weights, ωi,
and (2) that ri is sufficiently small so that the truncated power series (32) is an accurate
approximation of uH . While it may seem unclear whether choosing an appropriate ri
is indeed possible, this fact was proven in [14]. Now, if the discretization node xi is
on a boundary panel of length hi, it can be shown that setting ri = 4hi provides high
accuracy when using 16 Legendre nodes on each panel . However, having the center
so far places further restrictions on the discretization of the domain, since no boundary
points are allowed to be in the interior of the QBX disc. Thus, in practice one often takes
ri = hi and computes uH(yi,j) using the smooth weights for an oversampled version of
the boundary.

We finally get to the choice of the parameter δ. Two issues must be considered. The
first is that (1−δ)ri must be sufficiently large, as noted above. For larger δ, the boundary
must be oversampled more in order to compute uH accurately at the yi,j. The second
issue is numerical stability. It is clear that for a very small choice of δ, there may be
numerical issues in determining the difference between various points yi,j. However, there
is a more important source of error to consider for small δ. By examining the formulas for
the QBX coefficients (35) and the power series (32), we see that any error in computing
the αl,i can be amplified by a factor of 1/δp in the worst case, i.e. for points on the
boundary of the QBX disc. From this, we can see that for a higher-order scheme (larger
p) it is desirable to have a larger δ and therefore more oversampling of the boundary.
This phenomenon — the need to oversample more for a higher order scheme — will be
familiar to practitioners of QBX.

Let xi be a boundary point and hi the length of its boundary panel. For the compu-
tations in Section 6, we used the following parameters in the QBX scheme:

• (Distance to QBX center) ri = hi

• (QBX order) p = 8

• (Number of points in integral) MQBX = 40

• (Radius for integral) δri = 3ri/4, i.e. δ = 3/4

• (FMM order) pFMM = 52

• (Boundary oversampling factor) nover = 4

Note that by “oversampling the boundary” we mean that we place 16nover Legendre nodes
on each panel instead of 16. The parameters above were found to work well in practice
but more optimal choices may be possible.

Remark 2. The idea of using equispaced points on a circle to form a power series ex-
pansion of a harmonic function is reminiscent of the “fast multipole method without
multipoles” of [2].

5.4. Derivatives of uH

As mentioned in the introduction, the values of the derivatives of the solution are
important for many physical applications. Unfortunately, there are two sources of diffi-
culty for obtaining high accuracy values of the derivative with our scheme when solving
with Dirichlet boundary conditions. The first is that the standard QBX method loses

16

precision when computing derivatives of a double layer potential. The second source of
difficulty stems from the nature of the Dirichlet problem and the way that we interpolate
function values in an embedded boundary method. We address these issues in detail in
the next two sections, and show that while the first issue can be avoided with a clever
use of the Cauchy-Riemann equations, the second issue is intrinsic to the fact that the
scheme we present in this article relies on C0 extension.

5.4.1. Derivatives of a double layer potential

In the QBX setting, the derivatives of the layer potentials can be obtained by differ-
entiating the QBX power series expansion. This works well for the single layer potential
but has been observed to result in the loss of precision for the double layer potential
[28]. The cause of this loss of precision is unclear but may result from the hyper-singular
nature of the derivatives of the double layer potential as operators on the boundary.

It was pointed out to us by Manas Rachh and Leslie Greengard [42] that the evaluation
of the derivatives of the double layer potential can be accomplished by differentiating the
density along the boundary and using the QBX algorithm for the Cauchy kernel (which
behaves like the double layer kernel). The key observations are that

Dµ(x) = Re

(
− 1

2πi

∫
µ(ξ)

ξ − z
dξ

)
, (36)

(∂x1 − i∂x2)Dµ(x) = − 1

2πi

∫
µ(ξ)

(ξ − z)2
dξ , (37)

− 1

2πi

∫
µ(ξ)

(ξ − z)2
dξ = − 1

2πi

∫
µ′(ξ)

ξ − z
dξ , (38)

where z = x1 + ix2 and ξ = y1 + iy2 for y ∈ ∂Ω. Let τ denote the unit tangent on
the boundary and ∂τ denote differentiation along the boundary. The following steps
summarize the algorithm for computing ∇Dµ implied by the above observations:

• Compute the derivative ∂τµ using spectral differentiation on each panel of Legendre
nodes.

• Compute

F (x) = − 1

2πi

∫
∂τµ(ξ)

ξ − z
dξ , (39)

with z = x1 + ix2 for each target x using a standard QBX algorithm.

• Obtain the values of the gradient by

∂x1(Dµ(x)) = Re(F (x)) , (40)

∂x2(Dµ(x)) = − Im(F (x)) . (41)

With the above algorithm, the difficulties associated with evaluating derivatives of
the double layer potential are avoided by instead evaluating the derivative of a function
along a curve, which is relatively simple with our discretization of the boundary with
panels of Legendre nodes. We have implemented this method for the computations in
Section 6.

17

5.4.2. Embedded boundary methods and the Dirichlet boundary condition

We will introduce some notation in order to discuss the effect of the boundary cor-
rection on the overall error. Let û(x) be the computed value of the solution u at a point

x and ûH(x) be the computed value of uH(x). Let V fe be the volume integral of fe, Vf̃e
be the computed values of V fe at the grid points, and ṽ(x) be the interpolation of those
computed values at any given point x, as in Section 3. Likewise, let ∇V fe be the gradient
of the volume integral of fe, ∇Vf̃e be the computed values of ∇V fe at the grid points,
and g̃(x) be the interpolation of those computed values at any given point x. Recall that
u is given by

u(x) = V fe(x) + uH(x) , (42)

where uH(x) solves

∆uH = 0 in Ω (43)

uH = g − V fe|∂Ω on ∂Ω . (44)

A conservative estimate of the error is then given by

|u(x)− û(x)| ≤ |V fe(x)− ṽ(x)|+ |uH(x)− ûH(x)| . (45)

Likewise, we have

|∇u(x)−∇û(x)| ≤ |∇V fe(x)− g̃(x)|+ |∇uH(x)−∇ûH(x)| . (46)

We have addressed the error due to the volume integral (the first term on the right-hand
sides of (45) and (46)) in Sections 3 and 4. We will now discuss the effect of the error in
the boundary correction (the second term on the right-hand sides of (45) and (46)).

In most of the numerical tests we perform in Section 6, the discretization error, solu-
tion error, and QBX error associated with the boundary integral are made to be so small
that the error in the boundary correction uH is dominated by the error in the interpolated

values of the volume potential on the boundary. In other words, we assume that ûH is
exactly a solution of

∆ûH = 0 in Ω (47)

ûH = g − ṽ|∂Ω on ∂Ω , (48)

and the source of the error is that we are solving for the wrong boundary condition. By
the maximum principle, we have that

|uH(x)− ûH(x)| ≤ max
y∈∂Ω

|V fe(y)− ṽ(y)| , (49)

so that this error is of the same order as the contribution from the volume integral.

Let us now turn to the error in ∇ûH . We may make the same assumption about the

discretization error, but need to have a close look at the boundary value problem ∇ûH
solves. For a function ψ defined on the boundary ∂Ω, let DtN [ψ] denote the Dirichlet-
to-Neumann map applied to ψ, i.e. if ϕ is the solution of

18

∆ϕ = 0 in Ω (50)

ϕ = ψ|∂Ω on ∂Ω , (51)

then DtN [ψ] = ∂νϕ|∂Ω. Having introduced this notation, we may write that ∇ûH is a
solution of the following

∆∇ûH = 0 in Ω (52)

∇ûH = νDtN [g − ṽ] + τ∂τ (g − ṽ)|∂Ω on ∂Ω . (53)

Again, we may apply the maximum principle to obtain

|∇uH(x)−∇ûH(x)| ≤ max
y∈∂Ω

|∇V fe(y)− ν(y)DtN [ṽ](y)− τ (y)∂τ ṽ(y)| . (54)

We see that the accuracy of the gradient of the potential will be affected more strongly
than the accuracy of the potential by the error in the boundary correction because the
gradient of the solution of the Laplace Dirichlet problem depends on the accuracy of
the tangential derivative (and Dirichlet-to-Neumann map) of the boundary values. This
is typically not a concern in the integral equations context, for two reasons. First, one
usually assumes that one has high order accurate values for the boundary data. Second,
the evaluation of the gradient of a layer potential is smoothing for points sufficiently far
from the boundary. However, in the context of the Poisson solver we present in this
article, the tangential derivative of ṽ is, as an analytic matter, one order lower than the
order of ṽ (this is because ṽ is a polynomial on each box) and the value of the gradient
may be requested arbitrarily close to (or even on) the boundary. This loss of accuracy
for the boundary data results in a similar loss of accuracy for the computed gradient.

For a smoothly extended function fe, a potential way to address this problem is as
follows. The box code can be used to compute ∇Vf̃e at the collocation points in the same
way that Vf̃e is computed. The interpolant of the gradient computed this way, which we
call g̃, is the same order as ṽ. We can then construct a new approximation to V fe on
the boundary by first computing g̃ · τ along the boundary, where τ is the tangent vector
of the curve, and then computing its indefinite integral panel-wise (we correct for the
constant using ṽ, again panel-wise). The resulting function is the same order accuracy
as ṽ but its derivative is a better approximation to the derivative of V f̃e. We investigate
the merits of this alternative approach numerically in Section 6.

Unfortunately, this approach does not appear to improve the order of accuracy for non-
smooth fe. As noted in Section 4.1, we expect the convergence of the computed gradient
to be one order lower than the potential for an extended density fe obtained through
continuous extension or extension by zero, i.e. there is no advantage to using g̃ as it is
already one order of accuracy lower than ṽ. This was evident in numerical experiments,
where the accuracy in the derivatives was comparable using this new approximation to
V f̃e instead of ṽ. We therefore leave these results out of the next section. In the case that
a Ck extension is available for sufficiently large k, this technique may prove important to
achieving super-convergence.

6. Numerical results

In order to verify the preceding analysis and test the performance of the numerical
method we propose in this article, we have implemented a Poisson solver in Fortran which

19

combines all the different modules we presented in the previous sections. The volume
integral code is a modified version of the original Fortran code of [15] (using fourth order
interpolants on leaf boxes), with some added OpenMP parallelism and the modification
for computing gradient values discussed in Section 3.2. The codes for the boundary
correction and the continuous extension were written specifically for this work, and are
based on the methods described in Section 4 and 5. We are currently documenting the
numerical solver we used to generate the results shown below, and will make it freely
available online at a later date.

For each numerical test, we have used the domain Ω shown in Figure 2, which has an
irregular boundary and is multiply connected. The interfaces of this domain are specified
by parametric equations in polar coordinates. Specifically, each interface is given by a
set of points (θ, r(θ)) for θ ∈ [0, 2π), where r(θ) = c0 +

∑
j(cj cos(jθ) + dj sin(jθ)). The

choice of the coefficients was arbitrary. For reference, the non-zero coefficients for the
outer boundary were c0 = 0.25, d3 = c6 = c8 = c10 = 0.01, c5 = 0.02. The non-zero
coefficients for the inner boundary were c0 = 0.05, c2 = d3 = c5 = c7 = 0.005.

Figure 2: The domain Ω and its boundary Γ. The axes coincide with the boundary of the
containing box ΩB. Two outward-pointing boundary normal vectors are indicated by arrows.

Let Np denote the number of panels used in the discretization of the boundary and
M = 16 ∗ Np denote the total number of boundary points (we use 16 Legendre nodes
on each panel throughout). For the volume integral nodes, let NV denote the total
number of points in ΩB and NΩ denote the number of points inside Ω. For each test, we
approximated the relative L∞ error,

E(ψ) =
max

Ω
|ψexact − ψnumerical|

max
Ω
|ψexact|

,

where ψ is either the potential or its derivatives, by sampling at 106 points randomly
placed in Ω. These points were kept the same for each discretization level for the sake

20

of convergence tests. We report the error in the gradient below as
√
E(ux)2 + E(uy)2.

In the error analysis of this section, the density for the boundary correction is computed
with high accuracy (say 12 digits) and the corresponding layer potential is evaluated with
high accuracy as well (say 12 digits for the potential and 8-9 digits for its gradient). With
this assumption, the error will be primarily a function of the number of discretization
nodes in the volume, i.e. NΩ.

All computations were performed on a desktop computer with an Intel Xeon(R) CPU
E3-1220 v5 (3.00GHz, 4 core) and 16 Gb of memory. A few of the computations depend
only on the boundary and therefore take the same amount of time for each discretization
level. In the first example, the boundary was discretized with M = 9, 280 nodes. The
precomputation time for the direct solver took 1.20 and 1.80 seconds for the continuous
function extension and boundary correction linear systems, respectively. The precompu-
tation time to allow for O(1) access to the layer potential took .60 and 1.20 seconds for
the continuous function extension and boundary correction layer potentials, respectively.
The solution in the second example is much more irregular than in the first and thus
more boundary points were required. For this case, the boundary was discretized with
M = 14, 208 nodes. The precomputation time for the direct solver took 1.57 and 2.89
seconds for the continuous function extension and boundary correction linear systems,
respectively. The precomputation time to allow for O(1) access to the layer potential
took 1.10 and 1.99 seconds for the continuous function extension and boundary correc-
tion layer potentials, respectively. We consider these computational costs to be modest
and emphasize that the precomputation of the fast-direct solver must only be done once
per domain. We report on the speed of the volume integral code and the evaluation of
the layer potentials below.

6.1. A note on adaptivity

When a smooth extension fe is known, the bound (11) of Section 3.3 implies a rather
straightforward a priori adaptive discretization strategy: for a given tolerance, refine the
tree until the local polynomial interpolant on each leaf box approximates fe within that
tolerance, which can be tested by comparing fe and the interpolant on a finer grid. It
turns out that this strategy will result in an overall error well below the desired tolerance.
A modification which, in practice, gets closer to the desired tolerance is to refine until
the error in the local polynomial interpolation times the area of the box is within the
tolerance on each leaf box.

For piecewise smooth fe, we saw in Section 4.1 that the bound (11) may be pessimistic.
However, the analysis of that section offers little in terms of an a priori discretization
strategy. If the above strategy for smooth fe is implemented, the accuracy of the resulting
scheme is often not even competitive with a uniform grid. We consider the problem of
efficient a priori adaptive discretization to be open in this setting but have empirically
found the following scheme to compare favorably to uniform discretization in our tests:
weight the error approximation using the size of the given leaf box as described above
but using the area of the leaf box for boxes which intersect the boundary (where fe is less
smooth) and using the sidelength of the leaf box otherwise. In this sense, we are more
forgiving of the approximation error for boxes where fe is merely continuous.

It seems that in many situations an a posteriori discretization strategy would be more
efficient in terms of accuracy per grid point. While this may be an intuitive statement, it
is not clear whether an a posteriori scheme would be more efficient in terms of accuracy
per flop because such a scheme may require several successive iterations. We do not

21

attempt to answer this question here but emphasize that the issue with (11) is a matter
of efficiency rather than correctness, i.e. if an a priori bound is required, (11) provides
one, it just may be an over-estimate.

6.2. Example 1

For Example 1, we choose a known, relatively smooth solution u given by

u(x) = sin(10(x1 + x2)) + x2
1 − 3x2 + 8 . (55)

and calculate f analytically by direct differentiation, and g by evaluating u on ∂Ω. Figure
3 shows heat maps of the corresponding fe obtained by zero extension and by continuous
extension. Example 1 is relatively simple on purpose, in order to test the validity of the
analysis of the previous sections.

Figure 3: The extended density fe for Example 1 using extension by zero (left) and continuous
extension (right).

First, consider the question of super-convergence for a smooth extension fe. This is
simple to test numerically as the formula (55) for u is smooth on R2. In Section 5, we
noted that the boundary correction can be computed with two different types of boundary
data. Let version 1 denote the boundary data obtained from ṽ and version 2 denote the
boundary data obtained by integrating τ ·g̃, where we have reused the notation of Section
5. We perform a convergence test on uniform trees for both versions 1 and 2. According
to the analysis of the preceding sections, version 1 should display fourth order convergence
for the potential and sub-fourth order convergence for the gradient, while version 2 should
display super-convergence, i.e. fourth order for both the potential and gradient.

In Figure 4, we see that the analysis is largely confirmed. While we cannot conclude
decisively regarding the convergence order of the gradient for version 1, it is indeed fourth
order for version 2. Note that the slope seems to taper off for the last point, which is
likely due to the fact that one is approaching the accuracy of the QBX evaluation of the
derivative. In terms of accuracy per grid point, version 2 is clearly superior to version 1.

Next, we consider the question of the convergence order using extension-by-zero and
continuous extension with a layer potential. The analysis of Section 4.1 suggests that we
should see second order convergence for the potential and first order convergence for the
gradient using extension-by-zero. This should be improved to third order for the potential
and second order for the gradient by using continuous extension. As a reminder, these
rates are to be compared with the rates implied by the coarser error bound (11), which
suggests that the extension-by-zero scheme would not converge and that the continuous
extension scheme would be merely first order in the potential and derivative. To test the

22

103 104 105 106

Number of discretization points

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

A
b
so

lu
te

 e
rr

o
r

error, pot v1
error, pot v2
4th order

103 104 105 106

Number of discretization points

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 e
rr

o
r

err, grad v1
err, grad v2
3rd order
4th order

Figure 4: Example 1, smooth extension. Accuracy of versions 1 (green circles) and 2 (red
diamonds) for the potential (left) and gradient (right).

reasoning of Section 4.1, we performed a convergence test of the extension by zero and
continuous extension methods on uniform trees.

103 104 105 106 107

Number of discretization points

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

A
b
so

lu
te

 e
rr

o
r

err, zero-uniform
err, cts-uniform
2nd order
3rd order

103 104 105 106 107

Number of discretization points

10-6

10-5

10-4

10-3

10-2

10-1

100

A
b
so

lu
te

 e
rr

o
r

err, zero-uniform
err, cts-uniform
1st order
2nd order

Figure 5: Example 1, convergence rates on a uniform tree. Accuracy of the potential (left) and
gradient (right) versus the number of discretization nodes NΩ, using either extension-by-zero
(green circles) or continuous extension (red diamonds).

The results are shown in Figure 5, and confirm that the analysis of Section 4.1 gives
a better sense of the convergence rate than a näıve application of the bound (11).

Next, we consider the question of adaptive grid refinement. An adaptive grid should
be able to provide significant gains, especially for the nonsmooth fe. For the results
presented here, we use an adaptive tree based on a priori error estimates, as described
in the previous subsection. This refinement rule tends to place more boxes near the
boundary because of the irregularity of fe across the boundary, as shown in Figure 6. We
only present results corresponding to continuous extension here, as our refinement rule
did not work well with zero extension, and is not relevant in the case of the smooth fe
since there is little difference between adaptive and uniform discretization in that case.

In Figure 7, we see modest improvement in the accuracy of the potential and significant
improvement in the accuracy of the gradient using adaptive discretization. We note that
for the tests with adaptive grids much larger values of NΩ could be achieved. This is
because the memory consumption of the volume integral code depends on NV , the total
number of nodes in the box ΩB. The uniform tree rather inefficiently places many points
outside of Ω, whereas the adaptive tree places relatively few points because the extended

23

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure 6: Example 1. An example adaptive tree for the continuously extended fe.

103 104 105 106 107 108

Number of discretization points

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

A
b
so

lu
te

 e
rr

o
r

err, cts-uniform
err, cts-adaptive
3rd order

103 104 105 106 107 108

Number of discretization points

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 e
rr

o
r

err, cts-uniform
err, cts-adaptive
2nd order

Figure 7: Example 1. Using continuous extension, a plot of the error in the potential (left) and
error in the gradient (right) versus the number of discretization nodes NΩ, for both uniform
(green circles) and adaptive trees (red diamonds).

function is quite smooth outside of Ω, where it is harmonic.
We conclude this section on Example 1 by analyzing the run time performance of the

box code and of the evaluation of layer potentials. Figures for the box code are given in
Tables 1 and 2, and figures for the evaluation of layer potentials are given in Tables 3 and
4. tV denotes the time for the box code, tQP denotes the time for QBX precomputation
(forming the expansions for O(1) access to the field, as described above), and tQE denotes
the time for QBX evaluations at each node in the domain. Each of these times includes
the time required to evaluate both the potential and the gradient. The performance
is only reported for continuous extension; the results for extension by zero and smooth

24

NΩ NV tV NΩ/tV NV /tV

2.9290e+03 1.6384e+04 3.0193e-02 9.7009e+04 5.4264e+05
1.1717e+04 6.5536e+04 4.4461e-02 2.6353e+05 1.4740e+06
4.6846e+04 2.6214e+05 1.2574e-01 3.7256e+05 2.0848e+06
1.8739e+05 1.0486e+06 3.9343e-01 4.7629e+05 2.6652e+06
7.4955e+05 4.1943e+06 1.4926e+00 5.0218e+05 2.8101e+06
2.9983e+06 1.6777e+07 7.3144e+00 4.0991e+05 2.2937e+06

Table 1: Box code timing information for Example 1 with continuous function extension and a
uniform tree.

NΩ NV tV NΩ/tV NV /tV

6.2928e+04 1.1685e+05 7.5608e-02 8.3229e+05 1.5454e+06
1.1291e+05 2.3666e+05 1.2941e-01 8.7251e+05 1.8287e+06
3.0310e+05 5.6781e+05 2.7364e-01 1.1077e+06 2.0750e+06
9.1144e+05 1.5124e+06 6.4442e-01 1.4144e+06 2.3468e+06
1.4207e+06 2.7318e+06 1.1932e+00 1.1906e+06 2.2895e+06
4.4043e+06 7.3749e+06 3.0303e+00 1.4534e+06 2.4337e+06

Table 2: Box code timing information for Example 1 with continuous function extension and
an adaptive tree.

extension are similar.
There are a few points to highlight from Tables 1 and 2. We see that NV /tV is roughly

constant for large NV , indicating that the FMM indeed scales linearly in terms of the
total number of FMM nodes. One of the strengths of a box code is that this ratio is
similar for uniform and adaptive trees. Further, the throughput is quite good, at about
2.5 million points per second. We include the ratio NΩ/tV because the number of grid
points inside the domain seems to be the more natural figure of merit. For a uniform tree
(Table 1), we have that NΩ is a fixed fraction of NV , so that NΩ/tV is some fraction of
NV /TV ; here it is typically around 470 thousand points per second. In the adaptive case
(Table 2), the nodes can be placed more intelligently inside the domain and we see that
the throughput — in terms of NΩ/tV — is better than in the uniform case.

Tables 3 and 4, show that the run time for QBX is similar for volume nodes arranged
in uniform or adaptive trees, as one might expect. If one only considers the cost of

NΩ tQP tQE NΩ/(tQP + tQE) NΩ/tQE

2.9290e+03 1.1848e+00 1.3120e-03 2.4694e+03 2.2325e+06
1.1717e+04 1.1697e+00 3.2675e-03 9.9892e+03 3.5859e+06
4.6846e+04 1.1825e+00 1.2799e-02 3.9192e+04 3.6601e+06
1.8739e+05 1.2034e+00 5.4077e-02 1.4902e+05 3.4652e+06
7.4955e+05 1.1677e+00 1.8898e-01 5.5249e+05 3.9663e+06
2.9983e+06 1.1896e+00 7.4644e-01 1.5487e+06 4.0168e+06

Table 3: QBX timing information for Example 1 with continuous function extension and a
uniform tree.

25

NΩ tQP tQE NΩ/(tQP + tQE) NΩ/tQE

6.2928e+04 1.1912e+00 1.7972e-02 5.2042e+04 3.5014e+06
1.1291e+05 1.1744e+00 3.1084e-02 9.3665e+04 3.6325e+06
3.0310e+05 1.1708e+00 7.9357e-02 2.4245e+05 3.8195e+06
9.1144e+05 1.1733e+00 2.3131e-01 6.4889e+05 3.9404e+06
1.4207e+06 1.1770e+00 3.6280e-01 9.2264e+05 3.9159e+06
4.4043e+06 1.1733e+00 1.1130e+00 1.9264e+06 3.9572e+06

Table 4: QBX timing information for Example 1 with continuous function extension and an
adaptive tree.

the evaluations, we see that the throughput, NΩ/tQE, is roughly constant at about 3.9
million points per second. The precomputation time, tQP , depends only on the number of
boundary nodes M and is large relative to tQE until NΩ is of the order of a few millions.
When this precomputation time is included, the throughput, NΩ/(tQP +tQE), is still quite
high, on the same order as the box code for large NΩ. Of course, for a boundary with
many discretization nodes M , one expects this to no longer be the case.

6.3. Example 2

For Example 2, we choose an exact solution u with a sharp ridge along the x2 axis,
given by

u(x) = sin(10(x1 + x2)) + x2
1 − 3x2 + 8 + e−500x21 . (56)

As before, we obtain a closed form formula for f by calculating the Laplacian of u.
Observe that f has very sharp variations. This example was chosen on purpose to specif-
ically illustrate and analyze the value of adaptive mesh refinement. As in Example 1, g is
computed with arbitrary accuracy by evaluating u on ∂Ω. The function g also has sharp
variations, and so does the volume integral. In order to better resolve the boundary data
we thus use M = 14, 208 boundary nodes in this example, as opposed to M = 9, 280 in
Example 1.

First, consider the question of super-convergence for a smooth extension fe. Let
version 1 and version 2 of the boundary data be defined as in Example 1. We perform a
convergence test on uniform trees for both versions 1 and 2. As before, version 1 should
display fourth order convergence for the potential and sub-fourth order convergence for
the gradient, while version 2 should display super-convergence. This is precisely what we
see in Figure 8. For each version, the initial convergence order is slow, likely a result of
the irregularity of f . It is unclear what the eventual convergence order of the gradient is
for version 1 but it is fourth order for version 2. As in Example 1, the accuracy of version
2 is much better.

Next, we consider the question of the convergence order using extension-by-zero and
continuous extension with a layer potential. In Figure 9, we plot the error for the po-
tential and gradient for increasing NΩ on uniform trees with both extension-by-zero and
continuous extension. For this example, the two methods have similar error until NΩ

is large because the irregularity in the solution is unresolved by the grid for small NΩ.
Once NΩ is sufficiently large, we see that the convergence rate for continuous extension
is faster, though the specific rates are not as clear as they were for Example 1.

Figure 9 also demonstrates that a uniform grid does a poor job of giving high accuracy
for the gradient. We now test the effect of adaptive mesh refinement as in Example 1.

26

103 104 105 106

Number of discretization points

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 e
rr

o
r

error, pot v1
error, pot v2
4th order

103 104 105 106

Number of discretization points

10-5

10-4

10-3

10-2

10-1

100

101

102

103

A
b
so

lu
te

 e
rr

o
r

err, grad v1
err, grad v2
3rd order
4th order

Figure 8: Example 2, smooth extension. Accuracy of versions 1 (green circles) and 2 (red
diamonds) for the potential (left) and gradient (right).

103 104 105 106 107

Number of discretization points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 e
rr

o
r

err, zero-uniform
err, cts-uniform
2nd order
3rd order

103 104 105 106 107

Number of discretization points

10-3

10-2

10-1

100

101

102

103

A
b
so

lu
te

 e
rr

o
r

err, zero-uniform
err, cts-uniform
1st order
2nd order

Figure 9: Example 2, convergence rates on a uniform tree. Accuracy of the potential (left) and
gradient (right) versus the number of discretization nodes NΩ, using either extension-by-zero
(green circles) or continuous extension (red diamonds).

Figure 10 shows a representative adaptive tree for Example 2. The a priori refinement
strategy places many boxes near the irregularity in fe. Because the continuous extension
is smooth outside of Ω, the effect of the “ridge” on the x2 axis does not extend far outside
of the domain.

As in Example 1, the adaptive discretization strategy provides modest improvement
in the accuracy of the potential (and eventually no improvement at all). An explanation
for this is that the solution u is much smoother than f , so we greatly over-resolve u when
we construct the tree with the goal of resolving f . In other words, the a priori refinement
strategy is eventually less efficient than the uniform strategy in terms of the accuracy
of the potential. In contrast, adaptive discretization provides significant gains in the
accuracy of the gradient. This is because the gradient is less smooth and more difficult
to resolve than u so that the additional boxes used to resolve f are not as wasteful. Note
also that once again, for the tests with adaptive grids much larger values of NΩ could be
achieved, for the same reasons as in Example 1.

Finally, we present run time performance results as we did for Example 1. The
conclusions here are the same as the ones for Example 1. Observe in particular that the
performance of the box code is nearly the same here as it was for Example 1, even though
the trees used in this example are highly adaptive. This is one of the major advantages
of the numerical method we present in this article.

27

NΩ NV tV NΩ/tV NV /tV

2.9290e+03 1.6384e+04 1.0521e-01 2.7840e+04 1.5573e+05
1.1717e+04 6.5536e+04 4.5237e-02 2.5901e+05 1.4487e+06
4.6846e+04 2.6214e+05 1.1961e-01 3.9166e+05 2.1917e+06
1.8739e+05 1.0486e+06 3.9992e-01 4.6856e+05 2.6220e+06
7.4955e+05 4.1943e+06 1.4935e+00 5.0188e+05 2.8084e+06
2.9983e+06 1.6777e+07 7.0171e+00 4.2728e+05 2.3909e+06

Table 5: Box code timing information for Example 2 with continuous function extension and a
uniform tree.

NΩ NV tV NΩ/tV NV /tV

3.4204e+04 3.8032e+04 4.5255e-02 7.5581e+05 8.4039e+05
6.5547e+04 7.0480e+04 5.4312e-02 1.2069e+06 1.2977e+06
1.9972e+05 2.0987e+05 1.1204e-01 1.7826e+06 1.8732e+06
4.8924e+05 5.1256e+05 2.3064e-01 2.1212e+06 2.2223e+06
9.0490e+05 9.6006e+05 4.0450e-01 2.2371e+06 2.3735e+06
2.9398e+06 3.0676e+06 1.1827e+00 2.4857e+06 2.5937e+06

Table 6: Box code timing information for Example 2 with continuous function extension and
an adaptive tree.

NΩ tQP tQE NΩ/(tQP + tQE) NΩ/tQE

2.9290e+03 2.5967e+00 1.2099e-03 1.1274e+03 2.4209e+06
1.1717e+04 1.8191e+00 3.3716e-03 6.4292e+03 3.4752e+06
4.6846e+04 1.7931e+00 1.2859e-02 2.5940e+04 3.6431e+06
1.8739e+05 1.7918e+00 4.8408e-02 1.0183e+05 3.8710e+06
7.4955e+05 1.7931e+00 2.0054e-01 3.7597e+05 3.7377e+06
2.9983e+06 1.8273e+00 7.3797e-01 1.1688e+06 4.0629e+06

Table 7: QBX timing information for Example 2 with continuous function extension and a
uniform tree.

NΩ tQP tQE NΩ/(tQP + tQE) NΩ/tQE

3.4204e+04 2.1972e+00 1.1984e-02 1.5483e+04 2.8541e+06
6.5547e+04 2.1816e+00 2.5388e-02 2.9700e+04 2.5818e+06
1.9972e+05 2.1215e+00 5.0410e-02 9.1958e+04 3.9620e+06
4.8924e+05 2.0789e+00 1.2520e-01 2.2197e+05 3.9077e+06
9.0490e+05 1.8968e+00 2.2485e-01 4.2651e+05 4.0245e+06
2.9398e+06 2.1047e+00 7.7307e-01 1.0216e+06 3.8028e+06

Table 8: QBX timing information for Example 2 with continuous function extension and an
adaptive tree.

28

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure 10: Example 2. An example adaptive tree for the continuously extended fe.

103 104 105 106 107 108

Number of discretization points

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 e
rr

o
r

err, cts-uniform
err, cts-adaptive
3rd order

103 104 105 106 107 108

Number of discretization points

10-5

10-4

10-3

10-2

10-1

100

101

102

103

A
b
so

lu
te

 e
rr

o
r

err, cts-uniform
err, cts-adaptive
2nd order

Figure 11: Example 2. Using continuous extension, a plot of the error in the potential (left)
and error in the gradient (right) versus the number of discretization nodes NΩ, for both uniform
(green circles) and adaptive trees (red diamonds).

7. Conclusion

We have demonstrated that continuous global function extension constructed as the
solution of an exterior Laplace problem provided an effective framework to apply adaptive
FMM based Poisson solvers to problems with complex geometries. We found that the
desirable properties of the FMM are kept intact with such a method: the amount of
work still scales linearly with the number of degrees of freedom in the computational
domain and is competitive with classical FFT-based solvers in terms of work per grid
point, despite the flexibility of adaptive mesh refinement. This holds even for multiply
connected domains with irregular boundaries. The adaptive refinement capability of our

29

new solver plays a crucial role in guaranteeing an efficient use of the degrees of freedom in
the system, and in obtaining high accuracy for the gradient of the potential. Finally, for
the particular situations in which a smooth global extension is readily available without
resorting to numerical computation, as is for example the case of an extension by zero in
plasma physics applications [31], we have presented a numerical method which leads to
the same order of convergence for the gradient of the potential as the potential itself. In
our implementation of the FMM, this translates to 4th order convergence for both the
potential and the gradient, and the order of convergence can be increased by choosing
higher order basis functions [15].

Of course, when continuous extension is employed, the convergence order of the
method is not particularly high. We demonstrated above that adaptive refinement can
help improve the accuracy per degree of freedom in this case, particularly for the gradi-
ent, but the low order of accuracy is really a result of compromise. The method of this
paper emphasizes ease of use, domain flexibility, speed, and compatibility with adaptive
refinement strategies. To achieve these goals we have chosen an embedded boundary
method (for ease of use and domain flexibility) built on a box code (for speed and han-
dling highly adaptive grids). Because it is an embedded boundary method, high order
accuracy is more difficult to achieve. However, the method asks for very little from the
user. Only a parametric description of the boundary and a method for evaluating f ac-
curately in the domain must be provided. In particular, no special quadrature rules are
required, as is the case for a boundary fitted mesh, and there are no requirements on the
accuracy of derivatives of the user-provided f . As noted in Section 4.2, when accurate
derivatives of f are available, an extension computed as the solution of a polyharmonic
equation would result in a higher order method.

The capabilities of our solver can be extended in a number of ways. First, C1 function
extension provided by the solution of an exterior biharmonic problem would lead to faster
convergence for the solution and gradient than we have obtained with C0 extension,
provided that accurate values for the gradient of f are available on the boundary. Second,
one could allow for boundaries with corners and which nearly self intersect. Numerical
tools addressing these two challenges have recently been developed, but have not yet been
implemented in the Poisson context. Fortunately, the overall method is largely agnostic
as to how the function extension and harmonic correction are computed, so that new
methods may be swapped in when they become available. Finally, much of the technology
and analysis required for this work extends to three dimensions in a straightforward
manner. This is the subject of ongoing work, with progress to be reported at a later
date.

8. Acknowledgments

The authors would like to thank Prof. Leslie Greengard (NYU) and Dr. Manas
Rachh (Yale) for many insightful conversations, and Dr. Zydrunas Gimbutas (NIST)
for helping with the generation of tables. T.A. was partially supported by the U.S.
Department of Energy under contract DEFG0288ER25053, by the Air Force Office of
Scientific Research under NSSEFF Program Award FA9550-10-1-0180 and FA9550-15-1-
0385, and by a GSAS Dissertation Fellowship from NYU. A.J.C. was supported by the
U.S. Department of Energy, Office of Science, Fusion Energy Sciences under Award Nos.
DE-FG02-86ER53223 and DE-SC0012398.

[1] B. K. Alpert, Hybrid Gauss-Trapezoidal Quadrature Rules, SIAM J. Sci. Comput.

30

20 (5) (1999) 1551–1584. doi:10.1137/S1064827597325141.
URL http://dx.doi.org/10.1137/S1064827597325141

[2] C. R. Anderson. An implementation of the fast multipole method without multipoles.
SIAM Journal on Scientific and Statistical Computing, 13(4):923–947, 1992.

[3] T. Askham. Integral-equation methods for inhomogeneous elliptic partial differential
equations in complex geometry. PhD thesis, New York University, 2016.

[4] K. E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind.
Cambridge University Press, 1997. Cambridge Books Online.

[5] A. H. Barnett, “Evaluation of Layer Potentials Close to the Boundary for Laplace
and Helmholtz Problems on Analytic Planar Domains”, SIAM Journal on Scientific
Computing 36 (2) (2014), A427A451 doi:10.1137/120900253.
URL http://dx.doi.org/10.1137/120900253

[6] A. H. Barnett. Evaluation of layer potentials close to the boundary for laplace
and helmholtz problems on analytic planar domains. SIAM Journal on Scientific
Computing, 36(2):A427–A451, 2014.

[7] A. H. Barnett, B. Wu, and S. Veerapaneni, “A Fast Direct Solver for Elliptic Partial
Differential Equations on Adaptively Refined Meshes”, SIAM Journal on Scientific
Computing 37 (4) (2015), B519B542. doi:10.1137/140990826.
URL http://dx.doi.org/10.1137/140990826

[8] J. Bremer, Z. Gimbutas, and V. Rokhlin. A nonlinear optimization procedure for gen-
eralized Gaussian quadratures. SIAM Journal on Scientific Computing, 32(4):1761–
1788, 2010.

[9] J. Bremer, V. Rokhlin, and I. Sammis. Universal quadratures for boundary inte-
gral equations on two-dimensional domains with corners. Journal of Computational
Physics, 229(22):8259–8280, 2010.

[10] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct methods for solving
poisson’s equations. SIAM Journal on Numerical analysis, 7(4):627–656, 1970.

[11] J. Carrier, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm
for particle simulations, SIAM J. Sci. Statist. Comput. 9 (4) (1988) 669–686.
doi:10.1137/0909044.
URL http://dx.doi.org/10.1137/0909044

[12] S. Celestin, Z. Bonaventura, B. Zeghondy, A. Bourdon and P. Ségur, The use of
the ghost fluid method for Poisson’s equation to simulate streamer propagation in
point-to-plane and point-to-point geometries, Journal of Physics D: Applied Physics
42, 065203 (2009). doi:10.1088/0022-3727/42/6/065203.
URL http://dx.doi.org/10.1088/0022-3727/42/6/065203

[13] S. S. Dragomir. Approximating real functions which possess nth derivatives of
bounded variation and applications. Computers & Mathematics with Applications,
56(9):2268 – 2278, 2008.

31

[14] C. L. Epstein, L. Greengard, and A. Klöckner. On the convergence of local expansions
of layer potentials. SIAM Journal on Numerical Analysis, 51(5):2660–2679, 2013.

[15] F. Ethridge, L. Greengard, A new fast-multipole accelerated Poisson
solver in two dimensions, SIAM J. Sci. Comput. 23 (3) (2001) 741–760.
doi:10.1137/S1064827500369967.
URL http://dx.doi.org/10.1137/S1064827500369967

[16] P. Farkas, Mathematical foundations for fast methods for the biharmonic equation,
ProQuest LLC, Ann Arbor, MI, 1989, thesis (Ph.D.)–The University of Chicago.

[17] A. C. Genz and A. A. Malik. Remarks on algorithm 006: An adaptive algorithm for
numerical integration over an n-dimensional rectangular region. Journal of Compu-
tational and Applied mathematics, 6(4):295–302, 1980.

[18] L. Greengard. The rapid evaluation of potential fields in particle systems. MIT press,
1988.

[19] L. Greengard, J-Y. Lee, “A Direct Adaptive Poisson Solver of Arbitrary Or-
der Accuracy”, Journal of Computational Physics 125 (1996), pp. 415424
doi:10.1006/jcph.1996.0103.
URL http://dx.doi.org/10.1006/jcph.1996.0103

[20] L. Greengard, A. Kloeckner, and M. Rachh. Fast algorithms for Quadrature by
Expansion II: Local expansions. Forthcoming.

[21] R. B. Guenther and J. W. Lee, Partial Differential Equations of Mathematical
Physics and Integral Equations, Prentice Hall, Englewood Cliffs, NJ, 1988.

[22] J. Helsing and E. Wadbro. Laplace’s equation and the Dirichlet-Neumann map: a
new mode for Mikhlin’s method. J. Comput. Phys., 202(2):391–410, 2005.

[23] J. Helsing, R. Ojala, On the evaluation of layer potentials close to their sources, J.
Comput. Phys. 227 (5) (2008) 2899–2921. doi:10.1016/j.jcp.2007.11.024.
URL http://dx.doi.org/10.1016/j.jcp.2007.11.024

[24] J. Helsing and R. Ojala. Corner singularities for elliptic problems: Integral equations,
graded meshes, quadrature, and compressed inverse preconditioning. Journal of
Computational Physics, 227(20):8820–8840, 2008.

[25] K. L. Ho and L. Greengard. A fast direct solver for structured linear systems by re-
cursive skeletonization. SIAM Journal on Scientific Computing, 34(5):A2507–A2532,
2012.

[26] T. Hrycak, V. Rokhlin, An improved fast multipole algorithm for poten-
tial fields, SIAM J. Sci. Comput. 19 (6) (1998) 1804–1826 (electronic).
doi:10.1137/S106482759630989X.
URL http://dx.doi.org/10.1137/S106482759630989X

[27] S. Kapur and V. Rokhlin. High-order corrected trapezoidal quadrature rules for
singular functions. SIAM Journal on Numerical Analysis, 34(4):1331–1356, 1997.

32

[28] A. Klöckner, A. Barnett, L. Greengard, M. O’Neil, Quadrature by expansion: a new
method for the evaluation of layer potentials, J. Comput. Phys. 252 (2013) 332–349.
doi:10.1016/j.jcp.2013.06.027.
URL http://dx.doi.org/10.1016/j.jcp.2013.06.027

[29] M. H. Langston, L. Greengard, and D. Zorin, “A free-space adaptive FMM-based
PDE solver in three dimensions”, Communications in Applied Mathematics and
Computational Science, 6 (2011), pp. 79-122 doi:10.2140/camcos.2011.6.79.
URL http://dx.doi.org/10.2140/camcos.2011.6.79

[30] M. H. Langston. An Adaptive Fast Multipole Method-Based PDE Solver in Three
Dimensions. PhD thesis, New York University, 2012.

[31] J. P. Lee and A. J. Cerfon, “ECOM: a fast and accurate solver for toroidal axisym-
metric MHD equilibria”, Computer Physics Communications 190 (2015), pp. 72-88
doi:10.1016/j.cpc.2015.01.015.
URL http://dx.doi.org/10.10.1016/j.cpc.2015.01.015

[32] A. Mayo, “The Fast Solution of Poisson’s and the Biharmonic Equations on Irreg-
ular Regions”, SIAM Journal on Numerical Analysis 21 (2) (1984), pp. 285-299
doi:10.1137/0721021.
URL http://dx.doi.org/10.1137/0721021

[33] A. Mayo and A. Greenbaum, “Fast Parallel Iterative Solution of Poisson’s and the
Biharmonic Equations on Irregular Regions”, SIAM Journal on Scientific and Sta-
tistical Computing 13 (1) (1992), pp. 101-118 doi:10.1137/0913006.
URL http://dx.doi.org/10.1137/0913006

[34] A. McKenney, L. Greengard, A. Mayo, “A Fast Poisson Solver for Com-
plex Geometries”, Journal of Computational Physics 118 (1995), pp. 348355
doi:10.1006/jcph.1995.1104.
URL http://dx.doi.org/10.1006/jcph.1995.1104

[35] M. Minion, “A Projection Method for Locally Refined Grids”, Journal of Computa-
tional Physics, 127 (1996), pp. 158-178 doi:10.1006/jcph.1996.0166.
URL http://dx.doi.org/10.1006/jcph.1996.0166

[36] R. Ojala. A robust and accurate solver of laplaces equation with general boundary
conditions on general domains in the plane. Journal of Computational Mathematics,
30(4):433–448, 2012.

[37] A. Greenbaum, L. Greengard, and G. B. McFadden. Laplace’s equation and the
dirichlet-neumann map in multiply connected domains. Journal of Computational
Physics, 105(2):267–278, 1993.

[38] A. Pataki, A. J. Cerfon, J. P. Freidberg, L. Greengard, and M. O’Neil, “A fast, high-
order solver for the GradShafranov equation”, Journal of Computational Physics 243
(2013), pp. 2845. doi:10.1016/j.jcp.2013.02.045.
URL http://dx.doi.org/10.1016/j.jcp.2013.02.045

33

[39] S. Popinet, “Gerris: a tree-based adaptive solver for the incompressible Euler equa-
tions in complex geometries”, Journal of Computational Physics 190 (2003), pp.
572-600. doi:10.1088/0022-3727/42/6/065203.
URL http://dx.doi.org/10.1088/0022-3727/42/6/065203

[40] M. Rachh. Integral equation methods for problems in electrostatics, elastostatics and
viscous flow. PhD thesis, New York University, 2015.

[41] M. Rachh, A. Klöckner, and M. O’Neil. Fast algorithms for quadrature by expansion
i: Globally valid expansions. arXiv preprint arXiv:1602.05301, 2016.

[42] M. Rachh. Personal communication.

[43] L. F. Ricketson, A. J. Cerfon, M. Rachh, and J. P. Freidberg, Accurate Derivative
Evaluation for any Grad-Shafranov Solver, Journal of Computational Physics 305,
744 (2016); doi:10.1016/j.jcp.2015.11.015.
URL http://www.sciencedirect.com/science/article/pii/S002199911500755X

[44] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing, 7(3):856–869, 1986.

[45] K. Serkh and V. Rokhlin. On the solution of elliptic partial differential equations on
regions with corners. Journal of Computational Physics, 305:150–171, 2016.

[46] D. B. Stein, R. D. Guy, B. Thomases, Immersed boundary smooth extension: A high-
order method for solving PDE on arbitrary smooth domains using Fourier spectral
methods, Journal of Computational Physics 304 (2016), pp. 252–274 (1999) 1551–
1584. doi:10.1016/j.jcp.2015.10.023.
URL http://dx.doi.org/10.1016/j.jcp.2015.10.023

[47] H. R. Strauss, Nonlinear, threedimensional magnetohydrodynamics of noncircular
tokamaks, Physics of Fluids 19, 134 (1976) doi:10.1063/1.861310.
URL http://dx.doi.org/10.1063/1.861310

[48] Users Manual FMM Toolbox (2D) for MATLAB Version 1.1. MadMax Optics Inc.,
Hamden, CT, 2002.

[49] F. Vico, L. Greengard, and M. Ferrando. Fast convolution with free-space green’s
functions. Journal of Computational Physics, 323:191–203, 2016.

34

