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INTRODUCTION

Frequency comb generation in microresonators has become
a critically enabling technology for applications in metrology,
high-resolution spectroscopy and microwave photonics [1–8]. A
clear goal in such microresonators is the generation of octave-
spanning combs, which is often achieved by the generation of a
single soliton in a high-Q microresonator cavity [9, 10]. Much
like the multi-pulsing instability (MPI) in mode-locked laser cav-
ities [11–13], microresonators are prone to generating multiple
pulses in the cavity [14, 15], thus compromising the performance
of the frequency comb generation. Consequently, the dynam-
ics and stability of pulse generation in the microresonator is of
significant interest. In this manuscript, we explore analytically
tractable solutions of the Lugiato-Lefever equation (LLE) [16],
which is the governing equation for the microresonator dynam-
ics [17]. While solitons have been observed in a number of
experimental architectures, the deterministic manipulation of
states with multiple solitons in microresonators has only been
recently explored with the goal of prediction and control [14].
We develop a perturbation theory for periodic pulse train so-
lutions, known as Jacobi elliptic functions, which characterize
the underlying solutions in the microresonator cavity. Our work
provides a theoretically rigorous complement to recent experi-
mental observations for the transitions between N to N + 1 (or
vice versa) pulses in a microresonator. We further show how
cavity perturbations, due to, for instance, the Raman effect or

spontaneous emission noise, affect the resulting combline stabil-
ity and robustness.

Soliton perturbation theory has been one of the most suc-
cessful theoretical tools developed for characterizing the un-
derlying physics in optical communication systems [18–21] and
mode-locked lasers [22–25]. In this work, we develop a LLE
combline perturbation theory. The theory relies on an analytic
solution, the Galilean invariant one-soliton solution, of the non-
linear Schrödinger equation. Jacobi elliptic functions are a gen-
eralization of soliton solutions of the LLE equation, capable of
representing both single localized pulse solutions and periodic
pulse trains. Much like solitons, the solutions are parameterized
by a number of free parameters whose slow evolution under
perturbation characterizes the stability of the solution. A lin-
ear stability analysis of the Jacobi elliptic solutions is capable
of revealing key properties of the combline properties under
perturbation. Specifically, our analysis characterizes the stability
of N pulses per round trip in the laser cavity. Much like MPI in
mode-locked lasers [11–13], an initial cavity cold start will jump
to the most energetically favorable configuration. However, our
analysis shows how one can manipulate the number of pulses
per round trip by simply manipulating the microresonator de-
tuning, confirming experimental findings.

From a technical point of view, our stability analysis follows
closely the rigorous theory of soliton perturbation theory. For
the LLE Jacobi elliptic solutions, the linearized operator contains
four zero modes which correspond to invariances of the solu-
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tions. The effect of perturbations on these zero modes is quanti-
fied and shows how various perturbations can either destabilize
the solutions or force solutions to translate or bifurcate to a
higher or lower number of pulses per round trip. Additionally,
we show that the remainder of the continuous spectrum remains
bounded under perturbation. We demonstrate the application
of the theory on two canonical examples: (i) the LLE modified to
include Raman dynamics, and (ii) the LLE under the influence
of white noise (stimulated emission noise) perturbations. In
both cases, we show that the comblines remain stable while the
solitons undergo translation. Given the tremendous impact that
soliton perturbation theory has had on theoretical understand-
ing of light-wave transmission systems, our goal is to provide a
similar LLE combline perturbation theory for theoretical charac-
terization of microresonators.

The paper is outlined as follows: In Sec. 2, the LLE is intro-
duced along with the scalings to be used in our perturbation
theory. Section 3 gives a brief overview of the perturbation the-
ory to be used for modeling the microresonator. Section 4 and
5 present the Jacobi elliptic function solutions that satisfy the
LLE equation and their detailed linear stability analysis respec-
tively. The effects of two canonical perturbations due to Raman
and simulated emission are considered in Sec. 6. Section 7 pro-
vides a brief summary and outlook for the theoretical method
developed.

LUGIATO LEFEVER EQUATION

The Lugiato-Lefever equation (LLE), which was originally de-
rived in the context of detuned cavity resonators [16], has been
shown to describe the evolution of the electromagnetic field in
microresonators [17]. The LLE is a modification of the nonlinear
Schrödinger equation (NLSE) which includes damping, detun-
ing and a driving/pumping term. In dimensionless form, the
LLE is given by the partial differential equation (PDE)

∂u
∂t

= −(ε + iα)u + i|u|2u− i
β

2
∂2u
∂x2 + εF + εG(u, x, t), (1)

where u(x, t) the complex envelope of the total intracavity elec-
tric field, β determines the microring dispersion (β > 0 is normal
group-velocity dispersion while β < 0 is anomalous group-
velocity dispersion), α is the cavity detuning parameter, F char-
acterizes the external cavity pumping, and x ∈ [−π, π) since
the microresonator enforces periodic boundary conditions [17].
In our specific scaling, the parameter ε� 1 is used to model the
effects of linear cavity attenuation and small perturbations of the
form G(u, x, t) to the dominant balance dynamics of dispersion,
Kerr self-phase modulation, and detuning.

In our scalings, the LLE can be written as a perturbed version
of the detuned NLSE so that

i
∂u
∂t
− β

2
∂2u
∂x2 + |u|2u− αu = iε(F− u + G(u, x, t)). (2)

This scaling allows us to develop a systematic perturbation anal-
ysis of previously unconsidered periodic, Jacobi elliptic solutions
of the LLE. This complements the detailed stability analysis of
Godey et al. [26] which details the onset of a myriad of spatio-
temporal patterns in the LLE model. Specifically, they show
that the steady-state solutions of the LLE (with all temporal and
spatial derivatives set to zero) lead to a host of pattern-forming
instabilities [27] that are ultimately responsible for the genera-
tion of strongly nonlinear periodic waveforms. In our analysis,
we consider the stability of Jacobi elliptic solutions which are

strongly nonlinear solutions whose dominant balance includes
temporal and spatial derivative terms [28–31].

BACKGROUND: PERTURBATION THEORY

Our stability analysis determines the spectrum of the resulting
linearized operator along with the effects of perturbations on the
evolution of the solution parameters. In its most general form,
we can consider the one dimensional PDE

∂u
∂t

= N(u, ux, uxx, · · · , µ) + εG(u, x, t) , (3)

where N(·) represents some nonlinear dynamics (for which an
analytical solution is known), εG(u, x, t) is a perturbation to
these dynamics, and µ is a (bifurcation) parameter. A multi-
scale perturbation expansion [32, 33] is a representation of the
solution of the form

u(x, t) = u0(x, t, τ) + εu1(x, t) + ε2u2(x, t) + · · · , (4)

where τ = εt corresponds to a slow variable dependence [19, 34].
Collecting terms at each order of ε gives nonlinear dynamics

for the leading order term and forced, linear dynamics for all
other orders, i.e.

∂u0
∂t

= N(u0, u0x, u0xx, · · · , µ) , (5a)

∂u1
∂t

= L1(u0)u1 + F1(u0) , (5b)

∂u2
∂t

= L2(u0)u2 + F2(u0, u1) , (5c)

...

where the first equation is the O(1) balance, the second equation
is the O(ε) balance and the third equations is the O(ε2) balance.
As in the approach of Weinstein [34], we consider a solution
of the leading order problem with slow-time modulation. Let
u0(x, t) be given by

u0(x, t) = Φ(x, t, A1, A2, · · · ) , (6)

where the parameters Ai(τ) vary with the slow time scale τ.
Applying the Fredholm alternative to the forced, linear PDE
for u1 requires that the forcing term F1 be orthogonal to the
generalized null space of the adjoint operator L†

1 , i.e. if (L†
1)

mv =
0 for some m > 0, then

〈v, F1〉 = 0 , (7)

where 〈u, v〉 =
∫

D uv∗ dx is the inner product over the domain D.
For a given perturbation, this constraint will result in equations
for the slow evolution of the parameters Ai of the form

∂Ai
∂τ

= fi(A1, A2, · · · ) . (8)

Remarkably, in Weinstein’s analysis of the NLSE [34], these
constraints are all that needs to be satisfied to show that εu1
is small for small values of ε up to times of order 1/ε. Similar
results hold for elliptic function solutions of the NLSE, which we
outline in the following. We will show that the additional terms
in the LLE, when viewed as a perturbation of the NLSE, have a
stabilizing effect on the parameters of dn type solutions. Further,
we provide expressions for the evolution of the parameters for
two particular cavity perturbations of the LLE: the Raman effect
and spontaneous emission noise.
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Fig. 1. Numerical simulation of the (a) cn and (b) sn solutions
of Eq. (2) with |β| = 0.01, ε = 0.1, G = 0, and the detuning
α set to (a) α = 1.8732 and (b) α = 3.7464 (these values of the
detuning are chosen so that k2 = 1− 10−12 ≈ 1 in the analog of
Eq. (11) for these solutions). The solutions were seeded with a
white noise perturbation to induce instability in the evolution.
Both solutions are unstable, even in the limit k → 1 where the
linear stability analysis shows the eigenvalues to shrink to the
real axis. Note that the cn solution collapses from an N = 4
solution to a stable N = 2 dn solution.

JACOBI ELLIPTIC FUNCTIONS FOR THE NLSE

The Jacobi elliptic functions are periodic wavefunctions that
satisfy the NLSE with detuning [28–31], i.e. the leading order
dynamics as described by Eq. (2). The three basic functions are
denoted sn(x|k), cn(x|k), and dn(x|k), where the elliptic modu-
lus, k, parameterizes the solutions. The value of k is constrained
such that k ∈ [0, 1); we note that the reader may be more familiar
with the parameter m = k2, which is commonly used in software
for evaluating the Jacobi elliptic functions.

The stability of these solutions is well-studied. For the de-
focusing case, the sn solutions are known to be modulationally
stable [35]. For the focusing case, the cn and dn solutions are
modulationally unstable [36]. Recent research has shown the
spectral stability of the dn solution under perturbations with a
period equal to the fundamental period, but not under pertur-
bations with a period equal to a multiple of the fundamental
period [37]. Spectral stability of the cn(x|k) solution only holds
when k ∈ (0, kc) under perturbations with a period equal to the
fundamental period, with kc ≈ 0.908 [37]. In-depth discussion
of the stability properties of Jacobi elliptic function solutions of
the NLSE can be found in [35–37].

With the addition of the LLE terms, i.e. the damping and
forcing of the microresonator, the cn and sn solutions are unsta-
ble in their respective regimes. In Figure 1, we plot a numerical
simulation of the evolution of cn and sn wave forms (with four
pulses) governed by the LLE. The sn wave form quickly decays
and the cn wave form evolves into a solution of dn type (with
two pulses). It appears that the LLE does not support pulses
that are separated by a node, i.e. those with a π phase change
between neighboring pulses. In contrast with its instability as a
solution of the NLSE, the dn type solutions of the LLE are in fact
stable, even with multiple pulses in the cavity. We will show that

(a) (b)

Fig. 2. The dn-type solutions for (a) k2 = 0.9 and (b) k2 =
1 − 10−12 ≈ 1 with N = 4. The two panels demonstrate
that the elliptic modulus k ∈ [0, 1) can produce solutions
which resemble a modulated CW beam or highly localized,
hyperbolic secant pulses. Note that the dn solution has no
nodal points where the solution is zero.

this stability can be understood analytically and we will focus
on the dn type solutions for the remainder of the manuscript.

Solutions of dn type: anomalous dispersion
The dn solution is of the most practical importance, as it is
the only stable solution we find for the LLE in the anomalous
dispersion regime (β < 0). For this solution, we assume the
general form

u0(x, t) = û0eiψ = A dn(B(x− x0)|k)ei[ξ(x−x0)+σ−σ0], (9)

where A2 = −βB2, and

dx0
dt

= −βξ, (10a)

dσ

dt
= −α− β

2
B2(2− k2)− β

2
ξ2. (10b)

Since the wavefunctions of the LLE should be 2π/N periodic,
where N is a positive integer, the value of B determines the
value of k and vice-versa. Specifically, the period of the Jacobi
elliptic function y = dn(x|k) is 2K, where K(k) is the elliptic
integral of the first kind. So the period of û0 = dn(Bx|k) should
be T = 2K/B. If T = 2π/N, then we have 2K/B = 2π/N, thus
B = KN/π. Note that N is the number of localized (pulses) per
round trip in the microresonator.

Figure 2 shows the dn solution for two values of the parame-
ter k, where k ∈ [0, 1). These figures are illustrated with N = 4
so that four pulses are shown around the cavity. In the limit
k → 1, the function dn(x|k) → sech(x), which is the standard
hyperbolic secant soliton solution generated by the dominant
NLSE terms. When k→ 0, the function dn(x|k)→ 1, which is a
continuous wave solution of the LLE. The figure illustrates the
k2 = 0.9 and k2 = 1− 10−12 ≈ 1 solutions of the LLE. Figure 3
shows the dn solutions as the parameter N is varied from one to
four.

Based on the observed behavior of these solutions of the LLE
in numerical simulations, we consider solutions about the center
frequency, ξ = 0, and with a fixed phase term, which can be
obtained by setting

α = −βB2(2− k2)/2. (11)

With these choices, the value of the detuning must be increased
in order to accommodate more pulses per round trip, which is
consistent with experimental findings.

Importantly, we can compute the cavity energy ec versus
detuning frequency α for the dn solutions by the definition of
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(a)

(c)

(b)

(d)

Fig. 3. The dn solution for N = 1, 2, 3 and 4. Here we plot dn
solutions with the same modulus, k2 = 1 − 10−12 ≈ 1, as
functions on a circle (to emphasize their periodicity). As the
number of pulses N increases, the width of the each pulse nar-
rows and the height increases. These four solution branches
co-exist for a fixed value of the detuning α. The stability of
each solution branch depends upon the detuning parameter as
shown in Fig. 4.

the cavity energy as

ec =
∫ π

−π
|u0|2dx = −βB2

∫ π

−π
dn2(By|k)dy . (12)

The energy of each solution branch can then be computed for
different N values as shown in Fig. 4. The stability of each
branch will be discussed in what follows, but the energy versus
detuning shows the important trends to be considered. For k→
1, the function dn(x|k) → sech(x) so that the energy integral
can be approximated explicitly

ec ≈ −βB
∫ Bπ

−Bπ
sech2 zdz = −2βB . (13)

Given that α ≈ −βB2/2, we can then simplify the relation-
ship between the detuning and cavity energy, i.e. |ec/β| ≈
2
√

2
√
|α/β|. This value is for only a single pulse. If there are N

pulses, we obtain

|ec/β| = 2
√

2N
√
|α/β|. (14)

This gives a simple quantization of the energy as a function
of the number of pulses in the limit k → 1. We will show in
what follows that the k → 1 limit is where solutions to the
LLE are stable, thus the energy quantization formula is a good
approximation for the LLE microresonator dynamics. Note that
in Fig. 4, since |α/β| = B2/2, we have |α/β| → ∞ when k → 1
and |α/β| → 0 when k→ 0.

STABILITY ANALYSIS OF THE LLE

The stability of the Jacobi elliptic function solutions to the LLE
can be characterized using a linear stability analysis. Let u1 =
eiψw1. Following the perturbation expansion of Eq. (4), we find
at leading order the Jacobi elliptic solutions and at O(ε) the
linearized evolution

F̂ = i
∂w1
∂t
− αw1 + 2|u0|2w1 −

β

2
∂2w1
∂x2 + |u0|2w∗1 , (15)
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Fig. 4. The solution branches of the dn solution as a function
of energy (|ec/β|) versus detuning (|α/β|). Plotted are the so-
lution branches from N = 1 to N = 10. The instability of
each branch can be computed from the linearized operator
Eq. 17. Specifically, if the real part of any eigenvalue crosses
the threshold of 5× 10−4, then the branch is considered unsta-
ble (dashed red lines) for that value of detuning. For candidate
branches that are potentially stable (black lines), further anal-
ysis (as shown in Sec. 5) is required to confirm the stability of
the dn solution branches. This figure matches recent experi-
mental findings of [15] and confirms that the specific number
of pulses in the microresonator can be controlled by manipula-
tion of the detuning.

where F̂ = i(e−iψF + e−iψG(u0, x, t)− û0 − e−iψu0τ).
We can decompose the linearized evolution into real and

imaginary components by letting w1 = R + iI (w∗1 = R− iI) so
that in matrix notation it takes the form Rt

It

=
 0 β

2 ∂2
x − û2

0 + α

− β
2 ∂2

x + 3û2
0 − α 0

 R

I

+
 Im F̂

Re F̂

 ,

(16)

where ∂2
x denotes the second order derivative. The eigenvalue

spectrum of the matrix in Eq. (16) yields the spectral stability of
dn solutions, generally. Note that for û0 given by the dn solution,
α = −βB2(2− k2)/2.

Figure 5 shows the computed spectrum of the linearized op-
erator in Eq. (16) for the dn solution with N = 4. The operator
was numerically evaluated using a spectrally accurate method
with 1024 grid points (a fast Fourier transform was used to eval-
uate the second derivatives) and a standard matrix eigenvalue
solver. The eigenvalues corresponding to both k2 = 0.9 and
k2 = 1− 10−12 ≈ 1 are evaluated. Note for the case N = 4, the
fundamental period T = 2π

4 , thus [−π, π] is a multiple of the
fundamental period, so we expect instability [37]. For k2 = 0.9,
the dn solution clearly has unstable eigenvalues, i.e. eigenval-
ues with large positive real part. As k → 1, the real part of
the eigenvalues of dn shrink to the imaginary axis, suggesting
that the k→ 1 solutions will be better behaved, even if they are
technically unstable [37]. Thus a critical part of the analysis is
to determine if the addition of the LLE term F stabilizes such
microresonator solutions subject to slow-time modulation of the
parameters.
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Fig. 5. Eigenvalue spectrum of the matrix L defined in Eq. (16)
for the dn solution with (a) k2 = 0.9 and (b) k2 = 1− 10−12 ≈
1. Although the eigenvalues shrink to the imaginary axis as
k → 1, the solutions are known to be unstable under generic
perturbations.

Discrete Spectrum of dn Solutions
As with soliton perturbation theory, the generalized null space of
the adjoint of the linearized operator is critical for determining
stability. Specifically, the Fredholm-alternative theorem stated in
Eq. (7) requires that perturbations be orthogonal to the null space
of the adjoint linear operator (this removes so-called “secular”
modes which have polynomial growth in time [34]). For the dn
solution, the linear operator reduces to

L = − β

2
B2

 0 L−

−L+ 0

 , (17)

with the self-adjoint operators

L− = − d2

dz2 − 2 dn2 z− k2 + 2 , (18a)

L+ = − d2

dz2 − 6 dn2 z− k2 + 2 , (18b)

where a change of variables to z = B(x − x0) has been made
and the dependence of dn on k has been dropped for notational
convenience.

In the following, we will denote the generalized nullspace of
a linear operator L by kerg(L), i.e.

kerg(L) =
∞⋃

m=1
ker(Lm) . (19)

We also require the space Hm
per[a, b), which denotes a periodic

Sobolev space on [a, b). This space may be characterized by
the Fourier coefficients of a given function. Let f be a function
defined on [a, b) = [−π, π) and let cj defined by

cj =
1

2π

∫ π

−π
f (x)e−ijx dx . (20)

Then the Hm
per[−π, π) norm is defined by

‖ f ‖2
Hm

per
= ∑

j
|cj|2(1 + |j|2 + · · · |j|2m) . (21)

Note that if ‖ f ‖Hm
per

< ∞, then the Fourier coefficients of the

(m− 1)st derivative of f are absolutely summable so that f (m−1)

is continuous as a periodic function on [−π, π). The space Hm
per

can be defined for other intervals by appropriate scaling.
Let w1 = R + iI as above. As in [34], we define the space

M = H1
per × H1

per
⋂ (

kerg(L†)
)⊥

, (22)

which is where we will constrain the evolution of (R, I)ᵀ. Note
that the domain for z is [−NK(k), NK(k)). We also define the
periodic functions φ(z) and ϕ(z) to be

φ(z) = (K(k)E(z, k)− E(k)z)dn z− k2K(k) sn z cn z, (23a)

ϕ(z) = k2 cn z sn z(K(k)E(z, k)− E(k)z)

+(E(k)− K(k))dn z + k2K(k) cn2 z dn z , (23b)

where E(z, k)=
∫ z

0 dn2 ydy is the incomplete elliptic integral
of the second kind, E(k) = E(K(k), k) is the complete elliptic
integral of the second kind, and K(k) is as above. For the sake
of compactness, we will often drop the dependence of E(k) and
K(k) on the modulus k in the following. Note that E(z, k) is odd,
φ(z) is odd, and ϕ(z) is even — the parity of functions simplifies
much of the following analysis. A set of eigenfunctions that span
kerg(L†) can then be computed from the following observations

L−[dn z] = 0, (24a)

L+[sn z cn z] = 0, (24b)

L+L− [φ(z)] = L+[−2k2E sn z cn z] = 0, (24c)

L−L+ [ϕ(z)] = L−[2((k2 − 2)E− 2(k2 − 1)K)dn z] = 0,

(24d)

These results are used to derive some important properties of
the operators L†, L+, and L−, which are summarized in propo-
sitions 1 and 2. Proofs are included in the appendix.

Proposition 1 Assume N ∈ N and 0 < k < 1. The operator L−
is non-negative and self-adjoint, with ker(L−) = span{dn z}. The
operator L+ is self-adjoint, with ker(L+) = span{sn z cn z}.

Proposition 2 Assume N ∈ N and 0 < k < 1 and let ( f , g)ᵀ ∈
H1

per × H1
per. If the following orthogonality relations hold

〈 f , dn z〉 = 0 , (25a)

〈 f , φ(z)〉 = 0 , (25b)

〈g, sn z cn z〉 = 0 , (25c)

〈g, ϕ(z)〉 = 0 , (25d)

then ( f , g)ᵀ ∈ M.

Bounding the evolution of w1 (N = 1)

Following the analysis of Weinstein [34], the evolution of the
term w1 = R + iI is bounded by considering the function

Q( f , g) = − β

2
B2[〈L+ f , f 〉+ 〈L−g, g〉] , (26)

which is a conserved quantity along the solution trajectory for
w1, i.e. dQ(R, I)/dt = 0. For (R, I)ᵀ ∈ M, we have the follow-
ing bound.

sunchang
Highlight
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Proposition 3 Assume N = 1. Let w = R + iI ∈ M. Then there
exist constants C1 and C2 such that

C1

(
‖R‖2

H1
per

+ ‖I‖2
H1

per

)
≤ Q(R, I) , (27)

C2

(
‖R‖2

H1
per

+ ‖I‖2
H1

per

)
≥ Q(R, I) . (28)

This proposition is the primary result needed in our analysis:
if the slow evolution of the parameters B, ξ, x0, and σ is such
that (R(t), I(t))ᵀ ∈ M, then for any T0 we have sup0≤t≤T0/ε

‖εw1(t)‖H1
per
→ 0 as ε → 0. See [34] for details. A proof of

Proposition 3 based on a variational formulation can be found
in [37]. A more classical proof modeled after [34] is provided in
the appendix.

Modulation equations for the dn solution (N = 1)
For the dn solution,

∂τ (û0) =
√
−βBτ dn z + A

dk
dB

Bτ dnk z

+ A[Bτ(x− x0)− Bx0τ ]dnz z . (29)

We consider solutions with k→ 1, so that dk/dB ≈ 0. Using this
approximation, the above reduces to

∂τ (û0) =
√
−βBτ dn z− Ak2 sn z cn z

(
Bτ

B
z− Bx0τ

)
, (30)

so that

∂τ (u0) = eiψ√−βBτ dn z− eiψ Ak2 sn z cn z
(

Bτ

B
z− Bx0τ

)
+ i
(

ξτ
z
B
− ξx0τ − σ0τ

)
eiψ A dn z (31)

This gives the following expression for the forcing term

Im F̂ = F cos ψ + Re(e−iψG)−
√
−βBτ dn z− A dn z

+ Ak2
(

Bτ

B
z− Bx0τ

)
sn z cn z, (32)

Re F̂ = F sin ψ− Im(e−iψG) +
√
−βξτz dn z

− (ξx0τ + σ0τ)A dn z . (33)

To constrain the forcing term (Im F̂, Re F̂)ᵀ to be inM, Propo-
sition 2 implies the following constraints

〈Im F̂, dn z〉 = 0, (34a)

〈Im F̂, φ(z)〉 = 0, (34b)

〈Re F̂, sn z cn z〉 = 0, (34c)

〈Re F̂, ϕ(z)〉 = 0. (34d)

These constraints require the slow evolution of the parameters
to satisfy the following system of differential equations

dB
dτ

=
〈Re(e−iψG) + F cos ψ, dn z〉 −

√
|β|B〈dn z, dn z〉√

|β|(〈dn z, dn z〉 − k2〈z sn z cn z, dn z〉)
, (35a)

dx0
dτ

=
〈F cos ψ + Re(e−iψG), φ(z)〉√
|β|B2k2〈sn z cn z, φ(z)〉

, (35b)

dξ

dτ
= −〈F sin ψ− Im(e−iψG), sn z cn z〉√

|β|〈z dn z, sn z cn z〉
, (35c)

dσ0
dτ

+ ξ
dx0
dτ

=
〈F sin ψ− Im(e−iψG), ϕ(z)〉√

|β|B〈dn z, ϕ(z)〉
, (35d)

where ψ = ξz/B+ σ− σ0. We can further simplify the equations
above by applying trigonometric identities, we have

dB
dτ

=
〈Re(e−iψG), dn z〉+ F cos(σ− σ0)p1(ξ)√

|β|(q1(k)− k2q2(k))

−
√
|β|B〈dn z, dn z〉√
|β|(q1(k)− k2q2(k)

, (36a)

dx0
dτ

=
〈Re(e−iψG), φ(z)〉 − F sin(σ− σ0)p2(ξ)√

|β|B2k2q3(k)
, (36b)

dξ

dτ
=
〈Im(e−iψG), sn z cn z〉 − F cos(σ− σ0)p3(ξ)√

|β|q2(k)
, (36c)

dσ0
dτ

+ ξ
dx0
dτ

=
F sin(σ− σ0)p4(ξ)− 〈Im(e−iψG), ϕ(z)〉√

|β|Bq4(k)
,

(36d)

where

p1(ξ) = 〈cos(ξz/B), dn z〉 , (37a)

p2(ξ) = 〈sin(ξz/B), φ(z)〉 , (37b)

p3(ξ) = 〈sin(ξz/B), sn z cn z〉 , (37c)

p4(ξ) = 〈cos(ξz/B), ϕ(z)〉 , (37d)

and

q1(k) = 〈dn z, dn z〉 (38a)

q2(k) = 〈z dn z, sn z cn z〉 (38b)

q3(k) = 〈sn z cn z, φ(z)〉 (38c)

q4(k) = 〈dn z, ϕ(z)〉 . (38d)

In addition to these constraints, ξ should be an integer so
that u0 remains in H1

per. Therefore the analysis is only rigorous
when applied to perturbations for which dξ/dτ = 0, but we
have found that the analysis provides insight in other cases.

Consider the stability of this system of differential equations
around the center frequency, i.e. ξ = 0, so that ψ = σ− σ0 and
p2(ξ) = p3(ξ) = 0. For k ≈ 1, we can approximate many of the
inner products in the above expressions using the limiting forms
of the Jacobi elliptic functions. We obtain the approximations
p1(0) ≈ π, p4(0) ≈ 0, q1(k) ≈ 2, q2(k) ≈ 1, q3(k) ≈ −1, and
q4(k) ≈ 1. With these approximations, the evolution equations
simplify to

dB
dτ

=
1√
|β|

(〈Re(e−iψG), dn z〉+ Fπ cos(σ− σ0))− 2B , (39a)

dx0
dτ

= −〈Re(e−iψG), φ(z)〉√
|β|B2

, (39b)

dξ

dτ
=

1√
|β|
〈Im(e−iψG), sn z cn z〉 , (39c)

dσ0
dτ

+ ξ
dx0
dτ

= −〈Im(e−iψG), ϕ(z)〉√
|β|B

. (39d)

These slow evolution equations approximate the effect of a per-
turbation G on the microresonator comb.
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Stability of dn solutions of the LLE (N = 1)
When the perturbation G = 0, the parameter evolution con-
straints Eq. (39) yield the following set of equations

dB
dτ

=
Fπ cos(σ− σ0)√

|β|
− 2B , (40a)

dx0
dτ

= 0 , (40b)

dξ

dτ
= 0 , (40c)

dσ0
dτ

+ ξ
dx0
dτ

= 0 , (40d)

which gives the solution with B = Fπ cos(σ− σ0)/(2
√
|β|) as

a steady-state attractor to the dynamics. Specifically, values of
B larger and smaller than this exponentially decay back to the
steady-state value. In addition, the fast time scale dynamics
give

dx0
dt

= −βξ, (41a)

dσ

dt
= −α− β

2
B2(2− k2)− β

2
ξ2. (41b)

Integrating the constant σ0 into the second equation and setting
ξ = 0, i.e. we are working around the center frequency, then

d(σ− σ0)

dt
= −α− β

2
B2(2− k2). (42)

Since the first solvability condition gives the steady-state B =
Fπ cos(σ− σ0)/(2

√
−β), then

d(σ− σ0)

dt
= −α +

F2π2(2− k2)

8
cos2(σ− σ0) , (43)

and

cos(σ− σ0) =
2B
√
−β

Fπ
, (44)

which gives the time-independent phase of the microresonator
comb. Specifically, the real part of the solution is u0 =
A dn(B(x − x0), k) cos(σ− σ0) and the imaginary part is u0 =
A dn(B(x− x0), k) sin(σ− σ0).

These asymptotic results show that B 6= 0 provided F >
0. Moreover, the stable microresonator solution has a fixed
phase relation which does not evolve in time. Simulations show
that these two predictions are accurate representations of the
dynamics. More than that, the prediction here shows them to be
attractors for general initial conditions, which is again borne out
by simulation.

The case N > 1 in practice
Proposition 1 states that the nullspaces of L+ and L− are each
spanned by one function, for any positive number of pulses N.
However, in simulations of finite precision, this mathematical
truth is not observed for k ≈ 1. Indeed, the discretizations of
these operators are observed to have N eigenfunctions corre-
sponding to a zero (to numerical precision) eigenvalue when
k ≈ 1. Intuitively, this results from the fact that the dn function
is nearly zero between pulses for k ≈ 1 so that the pulses are
essentially decoupled. Indeed, the set of N shifted copies of
the eigenfunctions for N = 1, i.e. individual pulses in each of
[−K, K), [K, 3K), . . . , [(2N − 3)K, (2N − 1)K), is seen to give a
basis for these nullspaces, again to numerical precision.

Fig. 6. Numerical simulation of the (N = 4) dn solution of
Eq. (2) with ε = 0.1, G = 0, and the detuning α set to (a) α =
0.0593 and (b) α = 1.8732 so that the appropriate parameter for
the initial waveform is (a) k2 = 0.9 and (b) k2 = 1− 10−12 ≈ 1,
according to Eq. (11). The initial waveform was corrupted
with white noise to induce instability in the evolution. The
k2 = 0.9 solution is shown to be unstable whereas the k2 =
1− 10−12 solution is stable. This is consistent with our linear
stability analysis and Fig. 4.

Counterintuitively, it is this failure of Proposition 1 in practice
which explains the predictive power of the modulation equa-
tions of the previous sections — which hold mathematically
only when N = 1 — for numerical simulations with N > 1.
In particular, for the LLE type perturbation alone (G = 0), we
observe that the stabilizing effect on the amplitude of the comb
as predicted by Eq. (40a) and the generation of a time indepen-
dent phase as predicted by Eq. (44) for the N = 1 case also hold
for N > 1 when k ≈ 1. See Figures 6 and 7 for a comparison
of the stability of a dn initial condition with and without the
LLE terms, which we discuss in more detail in the next section.
For nonzero G perturbations, as in the Raman effect and spon-
taneous emission noise examples below, the more qualitative
N = 1 predictions are also observed numerically when N > 1.
The fact that the behaviors of the pulses have decoupled is only
apparent for the spontaneous emission noise example, as the
perturbations acting on each pulse are identical in the other
examples.

NUMERICAL SIMULATIONS

In this section, we compare numerical simulations of Eq. (2)
with predictions made by the theory outlined above. In all
simulations the value of β is fixed, with β = −0.01. When ε 6= 0,
we set F = (ρ(1 + (ρ− α)2))1/2 with ρ = 0.95 to remain in the
right parameter space for the generation of frequency combs.
The initial waveforms (u at time zero) are set according to Eq. (9)
with ξ = σ = σ0 = x0 = 0 and the value of k determined
by the detuning α as in Eq. (11). First, we simulate the LLE to
show that the dn solution is stable, as opposed to the observed
instability of the cn and sn solutions in Figure 1. Figure 6 shows
the evolution of the dn solution for ε = 0.1 and the detuning α
chosen so that k2 = 0.9 and k2 = 1− 10−12 ≈ 1. Recall that for
k2 = 0.9 the linear stability analysis showed strong instability
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Fig. 7. Numerical simulation of the (N = 4) dn solution of
Eq. (2) with ε = 0, G = 0, and the detuning α set to (a) α =
0.0593 and (b) α = 1.8732 so that the appropriate parameter for
the initial waveform is (a) k2 = 0.9 and (b) k2 = 1− 10−12 ≈ 1,
according to Eq. (11). The initial waveform was corrupted
with the same white noise as Fig. 6 to induce instability in the
evolution. Both the k2 = 0.9 solution and the k2 = 1− 10−12

solution are unstable. Comparing with Fig. 6, we observe that
the k2 = 1 − 10−12 solution is stabilized by the LLE type
perturbation.

and for k2 = 1− 10−12 the analysis showed weaker instability,
see Figure 5. Further, recall that for both values of the parameter,
the solution should be unstable for generic perturbations of
the equation. In both simulations, the initial waveforms are
corrupted with white noise in order to induce instability if it
exists. For k2 = 1− 10−12, the pumping and damping terms
of the LLE, i.e. the LLE-specific perturbations, have stabilized
the dn solution. The k2 = 0.9 solution is still unstable with this
perturbation. In Fig. 7, we repeat these calculations without the
LLE perturbation, i.e. setting ε = 0. The k2 = 1− 10−12 solution
is seen to be less stable than that in Fig. 6.

In Fig. 8, we plot equilibrated solutions of Eq. (2) as ε is
increased. In this example, the (N = 3) dn-type solutions for
k2 = 1− 10−16 remain stable, even for large values of ε. Note
that the solutions deform away from the original dn waveform
and develop a pedestal as ε is increased. Finally, Fig. 9 contains
plots of the predicted time-independent phase, determined by
Eq. (44), and the phase of a simulated microresonator solution
with a dn initial waveform, showing good agreement between
theory and simulation.

Raman term

An important modification to the LLE equation is the addition
of the Raman effect which is known to induce a self-frequency
shift in the microresonator [38, 39]. The Raman effect is included
in the LLE as part of the perturbation term G(u, x, t) in Eq. (2).
Letting U denote the waveform and G(U) denote the Raman
perturbation in physical units, we have [38]

G(U) = i
[
− fR|U|2 + fRhR

⊗
|U|2

]
U ≈ −i

[
fRτR

∂|U|2
∂x

]
U,

(45)
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Fig. 8. Stable numerical solutions of Eq. (2) with G = 0 and
α = 1.7793 for various values of ε. The initial waveform was
set as a (N = 3) dn solution with k2 = 1− 10−16. As ε is in-
creased from ε� 1, the solutions deform from the asymptotic
dn form to a localized structure that sits atop a shelf. Impor-
tantly, like the dn solution, the resulting evolution produces
solutions which have no nodal separation between neighbor-
ing pulses.

where the constants fR and τR are the Raman fraction and the
Raman shock time, respectively, and

⊗
denotes a convolution.

In simulations, the Raman response function hR is typically
chosen to be [40]

hR(x) =
τ2

1 + τ2
2

τ1τ2
2

e−x/τ2 sin(x/τ1), (46)

where τ1 = 12.2fs and τ2 = 32fs. In our numerical simulation
of the dimensionless LLE, Eq. (2), the Raman term becomes

G(u) = −iC ∂|u|2
∂x u, where C = 0.001.

The effect of the Raman perturbation of Eq. (45) can be sub-
stituted into the modulation constraints of Eq. (39) to evaluate
the impact on the comb dynamics. The symmetry properties of
the perturbation play a large role in determining the resulting
behavior. Specifically, symmetry considerations yield

dx0
dτ

= 0 , (47a)

dσ0
dτ

= 0 , (47b)

with the additional constraints that

dB
dτ

=
Fπ cos(σ− σ0)√

−β
− 2B , (48a)

dξ

dτ
=
〈2CBA3k2 dn2 z sn z cn z, sn z cn z〉√

−β
6= 0 (48b)

This determines the self-frequency shift induced by the Raman
term since the value of ξ gives the shift from the center frequency
used to derive the LLE. In addition to the self-frequency shift, it
should be recalled that

dx0
dt

= −βξ . (49)
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Fig. 9. Evolution of the real and imaginary parts of a (N = 3)
dn solution of Eq. (2) evaluated at x = 0, with G = 0,
α = 1.7793 (so that the initial waveform has k2 = 1− 10−16),
and ε set to (a) ε = 0.1 and (b) ε = 1. The dotted lines are
the theoretically calculated real and imaginary parts that re-
sult from our perturbation theory, whereas the solid lines are
from the direct LLE simulation. The perturbation theory holds
remarkably well even at ε = 1.

As the term ξ is slowly evolving, it can be thought of as a con-
stant over short time intervals so that the self-frequency shift
generates a linear translation of the solution with a group ve-
locity determined by the Raman term. Importantly, the Raman
term does not destabilize the comb, rather it simply shifts it in
frequency and forces a translation.

In Fig. 10, we plot simulations of the LLE with the addition

of the Raman effect, i.e. G(u) = −iC ∂|u|2
∂x u, for both ε = 0.1 and

ε = 1. The comb quickly forms and the induced translation
is readily apparent. We also plot a line corresponding to the
predicted drift velocity dx0/dt = −βξ. As noted above, only
integer values of ξ are allowed by the model. Nonetheless, the
frequency shift that ξ represents can be estimated from the simu-
lation, and need not be integer valued. In particular, we take the
empirical value of ξ to be the center of mass of the Fourier coef-
ficients of the simulated waveform (computed using the FFT).
After the first few time steps, this value holds steady at approx-
imately ξ = 0.3890 for the ε = 0.1 simulation and ξ = 0.2608
for the ε = 1 simulation. The theoretical drift velocity matches
well with the observed drift velocity of the simulation when
ε = 0.1, whereas, for ε = 1, the prediction is not quantitatively
satisfactory but corresponds to the qualitative behavior of the
simulation (note that ε = 1 is far from the asymptotic regime).

Spontaneous emission noise
Spontaneous emission noise from pumping/amplification has
always been a significant source of performance limitations in
optical systems. For instance, in optical communication systems,
the noise from amplification results in the Gordon-Haus timing
jitter [41] which imposes a fundamental limit on transmission
lengths for a given bit-error-rate constraint in lightwave com-
munication systems. Soliton perturbation theory provided the
fundamental calculation of this limitation. It also provided a
number of engineering design strategies for trying to overcome
the Gordon-Haus limitations, including sliding filters [42, 43]
and dispersion management [44–46].

The LLE perturbation theory developed here can also be
used to evaluate the effects of spontaneous emission noise in the
microresonator, something that has only recently been studied
experimentally [47, 48]. Specifically, for this case the perturba-
tion in Eq. (2) takes the form

G(u, x, t) = S(x, t) , (50)

Fig. 10. Top view of a numerical simulation of Eq. (2) with
α = 1.8732 and the addition of the Raman effect of Eq. (45).
The perturbation parameter ε is set to (a) ε = 0.1 and (b) ε = 1.
As predicted and quantified by our perturbation theory, the
dn solution remains stable despite the induced drift of the
solution. The drift velocity is compared with that computed
from our theory using self-frequency shift in both cases. The
dotted lines represent the theoretically calculated trajectories
of the drift of the solutions. The perturbation theory holds
well when ε is small.

where S(x, t) is a white noise process modeling the spontaneous
emission [34]. In this case, for a specific realization of noise,
the effects on the LLE comb parameters can be evaluated us-
ing Eq. (39). Generically, the noise generates amplitude, phase,
center-position and center-frequency jitter. But the most pro-
nounced effect comes from the fast scale dependency of the
center position on the center frequency. Thus the evolution

dξ

dτ
=

1√
−β

(〈Re(e−iψS(x, t)), sn z cn z〉) (51)

produces a center frequency with mean 〈ξ〉 and variance 〈ξ2〉
which then drives the center position through the relation
dx0/dt = −βξ. As with the Gordon-Haus jitter, this produces
a jitter in the pulse position, leading to a degradation in perfor-
mance. Figure 11 provides a simulation of the LLE under the
influence of white noise perturbations Eq. (50). Note that the
comb is stable, with fluctuations induced in the various solu-
tion parameters. Most notably, the zoom in of the individual
pulses shows the random-walk generated as a result of the noise.
As with Gordon-Haus jitter, the statistics of this random walk
could be evaluated with the LLE perturbation theory we have
developed.

CONCLUSIONS

In conclusion, we have shown that the LLE equation supports
stable solutions of the Jacobi elliptic type. These solutions model
periodic pulse trains of soliton-like solutions for which the
pumping F is critical for stabilization. Our rigorous stability
analysis also results in a perturbation theory for characterizing
the effects of higher-order terms in the microresonator, such as
may arise from Raman scattering, higher-order dispersion and
spontaneous emission noise. The historical success of soliton
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Fig. 11. (a) Top view of a numerical simulation of Eq. (2) with
ε = 0.1, α = 1.8732, and the addition of spontaneous emission
noise as defined in Eq. (50). As predicted and quantified by
our perturbation theory, the dn solution remains stable despite
the induced random walk (drift) of the individual pulse so-
lutions. Much like the Gordon-Haus jitter, our perturbation
theory captures the effect of the timing variance of individual
pulses. To highlight the random walk of each pulse, panels
(b) and (c) show a detail of the pulses near x = −π/2 and
x = π/2 respectively.

perturbation theory in describing, for instance, Gordon-Haus
timing jitter and/or the soliton self-frequency shifts, was critical
in characterizing lightwave transmission systems and mode-
locked lasers. Similarly, the LLE perturbation theory presented
here can be a critically enabling tool for characterizing a host
of additional microresonator phenomenon and potentially en-
gineering new resonator designs with improved performance
metrics.

Our stability analysis helps confirm several experimental ob-
servations. Most notably, it supports the recent observations that
soliton states in the microresonator are not detuning degenerate,
and can be individually addressed by laser detuning. Indeed,
the theory rigorously confirms that the detuning can be used to
lock the microresonator to any target multiple-pulse state, where
the stability of each multiple-pulse state is explicitly computed
and its minimum detuning assessed. The theory additionally
shows that the phase-locking of the dn comb solution is an at-
tractor to the resonator. Moreover, only solutions with no nodal
separation (a zero separating pulses) are stabilized. Finally, the
application of our theory to Raman scattering and stimulated
emission perturbations show that neither effects destabilizes
the comb. Rather, they both generate a drift in the pulse train,
one which is deterministic in nature (Raman) and one which
produces a random walk (noise).
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APPENDIX

In the following, we utilize some standard facts concerning
the eigenvalues and zeros of Sturm-Liouville operators with
periodic boundary conditions. See, for example, Theorem 3.1 of
Chapter 8 in [49]. These arguments are modeled after those in
[34].

Proof of Proposition 1

One can directly verify that L−[dn z] = 0. Because dn z has no
zeros, λ = 0 is the first eigenvalue (listed in increasing order).

Again, one can verify that L+[sn z cn z] = 0. There is at most
one function (up to a constant multiple) in ker(L+) which is
linearly independent of w(z) = sn z cn z. Note that the natural
domain for L+ is H2

per[0, 2NK) and recall that functions in H2
per

are determined by their values on [0, 2NK) and periodicity. For
integer j, we have that w(jK) = 0 and w′(jK) = (−1)j. Suppose
that v is another solution of L+[v] = 0. We have that w(z)v′(z)−
w′(z)v(z) is constant, so that (v/w)′ = d/w2 for some constant
d on any interval where w 6= 0. Consider an interval of the form
(jK, (j + 1)K) and let xj = (j + 1/2)K. For jK < z < (j + 1)K,
we have

v(z) = cjw(z) + djw(z)
∫ z

xj

dy
w2(y)

. (52)

Let

w̃j(z) = w(z)
∫ z

xj

dy
w2(y)

(53)

be defined on each interval (jK, (j + 1)K). It can be verified that
the limit of w̃j(z) exists as you approach either endpoint. In
particular, we have

lim
z→2jK+

w̃2j(z) = lim
z→2jK−

w̃2j−1(z) = −1 ,

lim
z→(2j+1)K−

w̃2j(z) = lim
z→(2j+1)K+

w̃2j+1(z) =
1√

1− k2
.

Because w is zero at all of these endpoints, we see that for v to be
continuous, the dj should all be equal. Without loss of generality,
we set dj = 1 for all j.

While the derivatives are still defined at the endpoints, they
are not so well behaved. We have that

j1 := lim
z→2jK+

w̃′2j(z)− lim
z→2jK−

w̃′2j−1(z)

=
2

1− k2

(
(1− k)3/2 − 1 + (2− k2)E(K/2, k)− (1− k2)K

)
,

j2 := lim
z→(2j+1)K+

w̃′2j+1(z)− lim
z→(2j+1)K−

w̃′2j(z)

=
√

1− k2
(

j1 −
2(2− k2)E− 4(1− k2)K

1− k2

)
.

Note that, for 0 < k < 1, j1 6= j2. To enforce that v has continuous
derivatives, we then obtain the following system of equations
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c1 − c0 = −j1
c2 − c1 = j2
c3 − c2 = −j1

...

c2N−1 − c2N−2 = −j1
c0 − c2N−1 = j2 .

By summing all of the equations, we obtain that 0 = N(j2 −
j1) 6= 0, so that the equations are inconsistent. Therefore, there
is no such v with a continuous derivative, i.e. there is no such v
in H2

per[0, 2NK). Note that for the case k = 0, we see that j1 = j2
so that such a v does exist, as expected.

Proof of Proposition 2
From Proposition 1, we have that

ker(L†) = span{(dn z, 0)ᵀ, (0, sn z cn z)ᵀ} . (54)

Recall the definitions of φ and ϕ:

φ(z) = (KE(z, k)− Ez)dn z− k2 sn z cn z, (55a)

ϕ(z) = k2 cn z sn z(KE(z, k)− Ez) + (E− K)dn z

+k2K cn2 z dn z. (55b)

It can be verified that

L+L−[φ(z)] = L+

[
−2k2E sn z cn z

]
= 0, (56a)

L−L+[ϕ(z)] = L−[2((k2 − 2)E− 2(k2 − 1)K)dn z] = 0. (56b)

Therefore,

ker((L†)2) = span{(dn z, 0)ᵀ, (0, sn z cn z)ᵀ, (φ(z), 0)ᵀ,

(0, ϕ(z))ᵀ} . (57)

Suppose that ( f , g)ᵀ ∈ ker((L†)3). Then, formally,

f = c1L−1
− ϕ(z) + c2φ(z) + c3 dn z , (58)

g = c4L−1
+ φ(z) + c5 ϕ(z) + c6 sn z cn z , (59)

where the inverses above denote a particular solution of the
corresponding inhomogeneous ODE. Consider L−1

− ϕ(z). Note
that the Fredholm alternative implies that

0 = 〈k2 cn z sn z(KE(z, k)− Ez) + (E− K)dn z, dn z〉
+ 〈k2K cn2 z dn z, dn z〉 (60)

= N(E2 + (k2 − 1)K2) . (61)

For 0 < k < 1, the expression E2 + (k2 − 1)K2 > 0, a contradic-
tion. Therefore, there is no such particular solution. Similarly,
consider L−1

+ φ(z). The Fredholm alternative implies that

0 = 〈(KE(z, k)− Ez)dn z− k2K sn z cn z, sn z cn z〉 (62)

= −N
k2

(
E2 + (k2 − 1)K2

)
, (63)

again, a contradiction. Therefore,

kerg(L†) = ker((L†)2) . (64)

Proof of Proposition 3
The existence of C2 is simple to establish. To establish the exis-
tence of C1, we require the following two lemmas. Note that for
the remainder of these statements, we assume that N = 1.

Lemma 1 Suppose that 〈 f , dn z〉 = 0 and 〈 f , φ(z)〉. Then there
exists a positive constant C+

1 such that

〈L+ f , f 〉 ≥ C+
1 ‖ f ‖2

L2 . (65)

Lemma 2 Suppose that 〈g, sn z cn z〉 = 0 and 〈g, ϕ(z)〉 = 0. Then
there exists a positive constant C−1 such that

〈L−g, g〉 ≥ C−1 ‖g‖
2
L2 . (66)

Suppose that 〈 f , dn z〉 = 0, 〈 f , φ(z)〉, 〈g, sn z cn z〉 = 0, and
〈g, ϕ(z)〉 = 0. Let C+

1 and C−1 be as in Lemmas 1 and 2, respec-
tively. Then

〈L+ f , f 〉+ 6‖ f ‖L2 + 〈L−g, g〉+ 2‖g‖L2 (67)

= ‖ d
dz

f ‖L2 + 6〈(1− dn2 z) f , f 〉+ (2− k2)‖ f ‖L2 (68)

+ ‖ d
dz

g‖L2 + 2〈(1− dn2 z)g, g〉+ (2− k2)‖g‖L2 , (69)

≥ ‖ f ‖H1
per

+ ‖g‖H1
per

. (70)

Therefore, the proposition holds with

C1 = min

 1
1 + 6

C+
1

,
1

1 + 2
C−1

 . (71)

Proof of Lemma 1

In the following, we repeat the argument of [34], making ap-
propriate changes to handle the periodic case. First, we note
that by Theorem 3.1 of Chapter 8 in [49], L+ has one negative
eigenvalue (when N = 1) with a corresponding eigenfunction
f0, which we take to be nonnegative without loss of generality.
Define

γ1 = min
f
〈L+ f , f 〉 , where ‖ f ‖2 = 1, 〈 f , dn z〉 = 0 . (72)

Then, by Lemma E.1 of [34], we have that γ1 ≥ 0 if

〈L−1
+ dn z, dn z〉 ≤ 0 , (73)

which is straightforward to verify using arguments similar to
those in the proof of Proposition 2. Therefore, γ1 ≥ 0. The
lemma is then proved if we can show that γ2 = inf f 〈L+ f , f 〉
with f restricted such that ‖ f ‖L2 = 1, 〈 f , dn z〉 = 0, and
〈 f , φ(z)〉 = 0 is non-zero, as γ2 ≥ γ1 ≥ 0.

Suppose that γ2 = 0. Let fm be a minimizing sequence of
〈L+ f , f 〉 satisfying ‖ fm‖L2 = 1, 〈 fm, dn z〉 = 0, and 〈 fm, φ(z)〉 =
0. Given δ > 0, there exists a M(δ) such that

0 <
∫ K(k)

−K(k)

(
d
dz

fm

)2
dz + (2− k2)

∫ K(k)

−K(k)
f 2
m dz (74)

≤ 6
∫ K(k)

−K(k)
dn2 z f 2

m dz + δ , (75)

for all m ≥ M(δ). In particular, the sequence fm is uniformly
bounded in the H1

per norm. Therefore, there is a subsequence of
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fm which converges weakly to an H1
per function f∗. This function

satisfies the constraints 〈 f∗, dn z〉 = 0 and 〈 f∗, φ(z)〉 = 0 by
weak convergence. Because H1

per is compactly embedded in L2,
there exists a further subsequence, which we denote by fmj , that
converges in the L2 norm (to f∗). Therefore, ‖ f∗‖L2 = 1.

Let h be such that ‖h‖2 = 1. Note that 〈h, f ′∗〉 = lim〈h, f ′mj
〉 ≤

lim inf ‖ f ′mj
‖L2 by weak convergence in H1

per. Taking the max-
imum over all such h implies that ‖ f ′∗‖L2 ≤ lim inf ‖ f ′mj

‖L2 .

Combining this with the L2 convergence of fmj gives that
〈L+ f∗, f∗〉 ≤ lim inf〈L+ fmj , fmj 〉 = 0, so that 〈L+ f∗, f∗〉 = 0.

Because f∗ attains the minimum and is admissible, there
exists a critical point of the problem

(L+ − λ1) f = λ2 dn z + λ3φ(z) , (76)

‖ f ‖2 = 1 , (77)

〈 f , dn z〉 = 0 , (78)

〈 f , φ(z)〉 = 0 , (79)

of the form ( f∗, λ1, λ2, λ3). Taking the inner product of f∗ with
Eq. (76), we obtain that λ1 = 〈L+ f∗, f∗〉 = 0. This implies that

L+ f∗ = λ2 dn z + λ3φ(z) . (80)

Taking the inner product of sn z cn z with Eq. (80), we obtain that
λ3 = 0. Following the arguments in the proof of Proposition 2,
this implies that

f∗ =
λ2

2((k2 − 2)E− 2(k2 − 1)K)
ϕ(z) + λ4 sn z cn z , (81)

for some λ4. The constraint 〈 f∗, φ(z)〉 = 0 implies that λ4 = 0
and the constraint 〈 f∗, dn z〉 = 0 implies that λ2 = 0. We have
that f∗ ≡ 0, a contradiction. Therefore, γ2 > 0, proving the
lemma.

Proof of Lemma 2

This lemma can be proved using arguments similar to the above.
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