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A stabilized separation of variables method for the modified
biharmonic equation

T. Askham

Abstract The modified biharmonic equation is encountered in a variety of application ar-
eas, including streamfunction formulations of the Navier-Stokes equations. We develop a
separation of variables representation for this equation in polar coordinates, for either the
interior or exterior of a disk, and derive a new class of special functions which makes the
approach stable. We discuss how these functions can be used in conjunction with fast algo-
rithms to accelerate the solution of the modified biharmonic equation or the “bi-Helmholtz”
equation in more complex geometries.

Keywords separation of variables · modified biharmonic equation · special functions ·
integral equation · fast multipole method

1 Introduction

Many fourth order elliptic partial differential equations of physical interest can be expressed
in terms of the composition of two second order elliptic differential operators. We focus here
on the modified biharmonic equation in two dimensions, but much of what follows can be
applied to other equations, such as the bi-Helmholtz equation, and has a natural extension to
the three dimensionsal setting. In a domain Ω with boundary ∂Ω , the modified biharmonic
equation can be written in the form

(∆ 2−λ
2
∆)u = ∆(∆ −λ

2)u = 0 in Ω , (1)

with λ ∈ R, subject to two application-specific, boundary conditions. This equation arises
naturally when solving the the Navier-Stokes equations using an implicit marching scheme
[7,15,8,4,18].

The Green’s function for the governing equation is [18]

G (r) =− 1
2πλ 2 (logr+K0(λ r)) .
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Applying Green’s identities, we obtain, for u a solution of (1),

u(x) =
∫

∂Ω

∂n∆yG (x,y)u(y)−∆yG (x,y)∂nu(y)+∂nG (x,y)∆yu(y)−G (x,y)∂n∆yu(y)

−λ
2 (∂nG (x,y)u(y)−G (x,y)∂nu(y)) dS(y) ,

where ∂ν denotes differentiation in the normal direction and G (x,y)=G (|x−y|). Therefore,
u is representable in terms of layer potentials defined on the boundary ∂Ω , where the integral
kernels are given by directional derivatives of G . By considering the power series expansions
and addition formulae for the log(r) and K0(λ r) parts of G separately (see, for instance,
[11]), any solution to (1) can be expressed using separation of variables in the interior of a
disk by

u(r,θ) =
∞

∑
n=−∞

[
αnr|n|+βnIn(λ r)

]
einθ . (2)

In the exterior of a disk, assuming the solution is bounded, the general solution takes the
form

u(r,θ) =C0 +C1K0(λ r)+
∞

∑
n=−∞
n 6=0

[
αnr−|n|+βnKn(λ r)

]
einθ . (3)

Unfortunately, using this representation naively for interior or exterior boundary value prob-
lems on a disk of radius R leads to numerical instabilities when the value λR is small. While
this problem is of interest in its own right, such expansions play a role in more general
domains when mulitpole and local expansions are used to represent outgoing and incom-
ing fields in more general geometries, as explained below. Here, we propose a stabilized
separation of variables approach based on a new class of special functions.

Remark 1 In the case of the bi-Helmholtz equation,

(∆ −λ
2
1 )(∆ −λ

2
2 )u = 0, (4)

the separation of variables representation in the interior of a disk is given by

u(r,θ) =
∞

∑
n=−∞

[αnIn(λ1r)+βnIn(λ2r)] einθ . (5)

In this setting, it is perhaps clearer that there are two dimensionless quantities involved: λ1R
and λ2R, with obvious ill-conditioning involved when λ1 ≈ λ2.

The remainder of this paper is organized as follows. In sections 2, and 3, we provide
some mathematical preliminaries, review the classical separation of variables approach to
the modified biharmonic problem, and define new functions Qn and Pn for stably repre-
senting solutions in the small λR regime. In section 4, we present numerical examples to
illustrate the necessity for stabilization and to demonstrate the efficacy of our new func-
tions. In the discussion of section 5, we outline how these functions can be used for stably
solving (1) on more complex geometries with an accelerated integral equation method. Such
methods depend on translation operators for series using the Qn and Pn functions, for which
we provide the necessary formulae. Appendix A includes some needed properties of Bessel
and Laurent series.
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2 Mathematical preliminaries

2.1 Notation

In the following, we use the “big O” notation to describe the order of the remaining terms
in a power series. The expression f (ε) = O(g(ε)) implies that there exist positive constants
C and ε0 such that

| f (ε)| ≤Cg(ε) , (6)

when 0 < ε < ε0. As we are concerned with the asymptotic behavior with respect to two
variables, we often write f (ε,δ ) = O(g(ε,δ )) which implies that there exist positive con-
stants C, ε0, and δ0 such that

| f (ε,δ )| ≤Cg(ε,δ ) , (7)

when 0 < ε < ε0 and 0 < δ < δ0.
In section 5, we use the “big O” notation to describe computational cost. For this case,

the expression f (N) = O(g(N)) implies that there exist positive constants C and N0 such
that

| f (N)| ≤Cg(N) , (8)

when N > N0.

2.2 Condition numbers of 2×2 linear systems and diagonal scaling

In this section, we review some basic results from linear algebra. Consider an invertible
linear system of the form

Ax = b . (9)

The condition number κ(A) of the matrix A describes the sensitivity of the problem of
recovering x from b [26]. Suppose that an approximate solution x0 is found such that

‖b−Ax0‖2

‖b‖2
= ε , (10)

where ‖ · ‖2 denotes the Euclidean norm. Let κ(A) = σmax(A)/σmin(A), where σmax(A)
and σmin(A) denote the maximum and minimum singular values of A. Then, x0 satisfies

‖x− x0‖2

‖x‖ ≤ κ(A)ε . (11)

Suppose that each column ai of A represents some function from a basis and that x
represents the coefficients which reconstruct b in that basis. In this case, the notion of the
sensitivity of x to changes in b should be unaffected by scaling the columns of A. Let D
be an invertible diagonal matrix and A, x, b, and x0 be as above. We note that the residual
is unaffected by scaling x0 and A, i.e. that ‖b−Ax0‖2 = ‖b− (AD)(D−1x0)‖2 but that the
condition numbers of A and AD can be significantly different. To avoid this ambiguity, we
quantify the sensitivity of recovering x from b in terms of the condition number of Ã = AD,
where D is a diagonal matrix with Dii = 1/‖ai‖2.

For 2×2 matrices, this is a natural normalization. It is straightforward to prove
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Lemma 1 Let A be a 2× 2 matrix with columns ai. If D is a diagonal matrix with Dii =
1/‖ai‖2, then

κ(AD) = min
v∈R2

κ(Adiag(v)) , (12)

where diag(v) denotes the diagonal matrix whose main diagonal is given by v.

It is particularly simple to characterize the condition number of matrices with this scal-
ing. We have

Lemma 2 Let A be a 2×2 matrix with columns denoted by ai. Suppose that ‖ai‖= 1. Then

κ =

√
1+ c
1− c

, (13)

where c = |aᵀ1a2| is the cosine of the angle between the two columns of A.

2.3 Separation of variables

Consider the modified biharmonic equation (1) where Ω is the disk of radius R centered at
the origin. For given functions f and g, we prescribe Dirichlet boundary conditions on u, i.e.

u = f on ∂Ω , (14)

∂nu = g on ∂Ω , (15)

where ∂n denotes the outward normal derivative. Other types of boundary conditions may
be considered.

To take advantage of the simplicity of this geometry, we translate the problem to a polar
coordinate system. Let (r,θ) denote the usual polar coordinates for the point (x,y) ∈ R2 as
in the following change of variables{

x = r cos(θ)
y = r sin(θ) ↔

{
r =

√
x2 + y2

θ = arctan(y/x)
, (16)

with θ ∈ [−π,π). Then, the Laplacian is given by

∆ = ∂rr +
1
r

∂r +
1
r2 ∂θθ . (17)

Consider the boundary data as functions of the coordinate θ . For f and g sufficiently
smooth, the Fourier series

f (R,θ) =
∞

∑
n=−∞

fneinθ , (18)

g(R,θ) =
∞

∑
n=−∞

gneinθ , (19)

converge uniformly in θ and the coefficients fn and gn are given by
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fn =
1

2π

∫
π

−π

f (R,θ)e−inθ dθ , (20)

gn =
1

2π

∫
π

−π

g(R,θ)e−inθ dθ . (21)

Following standard practice [12,24], we seek a solution u of the form

u(r,θ) =
∞

∑
n=−∞

un(r)einθ . (22)

Plugging this form for u into (1), we obtain, after some simplification,

∞

∑
n=−∞

(
∂rr +

1
r

∂r−
n2

r2

)(
∂rr +

1
r

∂r−
n2

r2 −λ
2
)

un(r)einθ = 0 . (23)

The above implies that the radial function un(r) satisfies the following ordinary differ-
ential equation (

d2

dr2 +
1
r

d
dr
− n2

r2

)(
d2

dr2 +
1
r

d
dr
− n2

r2 −λ
2
)

un(r) = 0 , (24)

subject to certain boundary or regularity conditions. For n 6=−1,0,1, we have

un(R) = fn , u′n(R) = gn ,
un(0) = 0 , u′n(0) = 0 .

(25)

For n = 0, we have

u0(R) = f0 , u′0(R) = g0 ,
u′0(0) = 0 , u′′′0 (0) = 0 .

(26)

Finally, for n =−1,1, we have

un(R) = fn , u′n(R) = gn ,
un(0) = 0 , u′′n(0) = 0 .

(27)

The conditions at r = 0 are derived by assuming that u has four continuous derivatives at the
origin.

It is well known [1,21] that equation (24) has the following four linearly independent
solutions for n 6= 0: r|n|,r−|n|, In(λ r),Kn(λ r), where In and Kn are the modified Bessel func-
tions of the first and second kind, respectively. For n= 0, the functions 1, logr, I0(λ r),K0(λ r)
are linearly independent solutions. The regularity of the solution at zero eliminates Kn(λ r),r−|n|, logr
from the acceptable solution set. Therefore, the allowed functions un are linear combinations
of the following form:

un(r) = αnr|n|+βnIn(λ r) . (28)

The boundary conditions for un determine αn and βn, with the conditions at r = 0 auto-
matically satisfied. From the conditions at r = R, we obtain the following linear system for
αn and βn
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 R|n| In(λR)

|n|R|n|−1 λ

2
(In−1(λR)+ In+1(λR))

(αn
βn

)
=

(
fn
gn

)
. (29)

The determinant of the system in (29) is λR|n|In+1(λR), which is nonzero for positive R.
Therefore, the coefficients αn and βn are determined by the boundary conditions and the
above provides an algorithm for computing u.

In the exterior of a disk, the derivation is analogous to the above. For simplicity, we
consider solutions of (1) which are bounded with derivatives that are o(1/r) as r goes to
infinity. This is sufficient for the solutions of the exterior problem to be unique; see, for
example, Proposition 3.5 in [18]. The functions appropriate for the exterior of a disk are
then Kn(λ r) and r−|n|. As in (29), we obtain a linear system for the expansion coefficients R−|n| Kn(λR)

−|n|R−|n|−1 −λ

2
(Kn−1(λR)+Kn+1(λR))

(αn
βn

)
=

(
fn
gn

)
. (30)

The determinant of this system is −λKn−1(λR)/R|n| so that it is invertible.
In order to make a numerical method out of the above, one simply truncates the Fourier

series expansions at some finite N, i.e.

f (R,θ)≈
N+1

∑
n=−N

fneinθ , (31)

g(R,θ)≈
N+1

∑
n=−N

gneinθ , (32)

u(r,θ)≈
N+1

∑
n=−N

un(r)einθ . (33)

The formulae (20) and (21) for the coefficients fn and gn can be approximated using the
trapezoidal rule with M = 2N + 2 equispaced points on ∂Ω and computed rapidly via the
fast Fourier transform [10]. The rate of convergence (in N) depends on the smoothness of
the boundary data f and g, with spectral convergence for analytic f and g.

3 Analysis of the separation of variables problem and new basis functions

The difficulty with the above procedure is in solving the linear systems (29), (30). In partic-
ular, for small λR, the columns of these system matrices are nearly linearly dependent, i.e.,
as λ goes to zero, the angle between the columns goes to zero (there is a similar effect for
small R). As noted in section 2.2 this makes the problem of recovering the coefficients, αn
and βn, from the data, fn and gn, unstable. In this section, we will investigate the nature of
this ill-conditioning and derive new bases which are better conditioned.

We first fix some notation. For a pair of functions (F(r),G(r)), define the matrix A(F,G,R)
to be

A(F,G,R) =
(

F(R) G(R)
F ′(R) G′(R)

)
. (34)
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This is the form of the matrix that appears in the linear systems (29), (30) used to solve for
the coefficients αn and βn. Let B̃ denote the matrix B with its columns normalized to unit
length.

For the interior problem, the ill-conditioning of the basis (r|n|, In) results from the fact
that the In(λ r) and r|n| are very similar functions for small r; they have the same asymptotic
behavior to leading order. The power series for In(λ r) is given by

In(λ r) =
∞

∑
k=0

(
λ r
2

)2k+|n|

k!(k+ |n|)! =
1

2|n||n|! (λ r)|n|+
1

2|n|+2(|n|+1)!
(λ r)|n|+2 + · · · , (35)

see [11, Ch. 10] for reference. By substituting this expression into A(r|n|, In,R), we obtain,
for n 6= 0,

A(r|n|, In,R) =
(

R|n| R|n|an(λ )(1+O(λ 2R2))

|n|R|n|−1 |n|R|n|−1an(λ )(1+O(λ 2R2))

)
, (36)

where an(λ ) = λ |n|/(2|n||n|!). We see that the columns of Ã(r|n|, In,R) are nearly co-linear
in the limit as either λ or R goes to zero. The dependence on λ and R is not identical (this
is wrapped up in the “big O” expressions); in the next section, we see that the condition
number of the normalized matrix generally increases faster as R goes to zero than it does as
λ goes to zero. For n = 0, we have the system

A(1, I0,R) =

(
1 1+O(λ 2R2)

0
1
2

λ 2R(1+O(λ 2R2))

)
, (37)

so that the condition number increases faster as λ goes to zero in this case.
To alleviate this ill-conditioning, we construct basis functions which are more orthogo-

nal in the small R and small λ limits. Let us define the functions Pn(r) by

Pn(r) = In(λ r)−
(

λ r
2

)|n| 1
|n|! , (38)

deleting the first term in the power series for In. Note that, Pn is a solution of (24) because it
is a linear combination of In and r|n|. The matrix we obtain for the basis (r|n|,Pn) is

A(r|n|,Pn,R) =
(

R|n| R|n|+2bn(λ )(1+O(λ 2R2))

|n|R|n|−1 (|n|+2)R|n|+1bn(λ )(1+O(λ 2R2))

)
, (39)

where bn(λ ) = λ |n|+2/(2|n|+2(|n|+1)!). As λ goes to zero, the columns of Ã(r|n|,Pn,R) do
not converge to the same vector, as in the above. Further, as R goes to zero, the normalized
columns do converge to the same limit but the effect is not as dramatic as for the pair (r|n|, In).
The problem of recovering the coefficients is therefore more stable for the basis (r|n|,Pn),
which we verify numerically in the next section.

Remark 2 It is simple to evaluate Pn(r) stably. For small λ r, the power series for In, with the
first term omitted, may be used. For larger r, there is no fear of numerical cancellation and
the formula (38) may be used directly, along with existing software for evaluating In. We
choose the pair (r|n|,Pn) as opposed to (In,Pn) because Pn and r|n| have different asymptotic
behavior for large r, whereas Pn and In both grow exponentially.
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Remark 3 If the functions In and r|n| were used as a basis themselves, their asymptotic
similarity in the small R regime would cause other numerical problems for a solution which
behaves like Pn. To see this, note that for small r, the function Pn(r) is O(r|n|+2), while the
functions In(r) and r|n| are O(r|n|). Therefore, there is significant numerical cancellation
when evaluating Pn(r) via the formula (38). We illustrate this effect in the next section.

A similar analysis applies to the exterior problem. The power series for Kn(λ r) is given
by

Kn (λ r) = 1
2 (

1
2 λ r)−|n|

|n|−1

∑
k=0

(|n|− k−1)!
k!

(− 1
4 λ r2)k +(−1)|n|+1 ln

( 1
2 λ r
)

In (λ r)

+(−1)|n| 12 (
1
2 λ r)|n|

∞

∑
k=0

(ψ (k+1)+ψ (|n|+ k+1))
( 1

4 λ r2)k

k!(|n|+ k)!
, (40)

where ψ denotes the digamma function (the digamma function is the logarithmic derivative
of the gamma function, i.e. ψ(z)=Γ ′(z)/Γ (z)). Substituting this expression into A(r−|n|,Kn,R),
we obtain, for n 6= 0,

A(r−|n|,Kn,R) =
(

R−|n| R−|n|cn(λ )(1+O(λ 2R2))

−|n|R−|n|−1 −|n|R−|n|−1cn(λ )(1+O(λ 2R2))

)
, (41)

where cn(λ ) = (|n| − 1)!2|n|−1λ−|n|. Again, after normalization, this linear system is ill-
conditioned as either R or λ goes to zero because the normalized columns become nearly
colinear. For the case n = 0, the basis (1,K0) results in the system

A(1,K0,R) =

(
1 −γ + log(2)− log(λR)(1+O(λ 2R2))

0 − 1
R
(1+O(λ 2R2| log(λR)|))

)
, (42)

which is actually well conditioned, after normalization, for small λ and R. For certain exte-
rior problems, the basis (logr,K0) is more appropriate. In this case, we have

A(logr,K0,R) =

(
logR −γ + log(2)− log(λR)(1+O(λ 2R2))

1
R

− 1
R
(1+O(λ 2R2| log(λR)|))

)
. (43)

After normalization, this system is generally well-conditioned as λ goes to zero. As R goes
to zero, however, the two columns become nearly colinear and the normalized matrix is ill-
conditioned. Regardless of these special cases, the instability for the n 6= 0 coefficients will
negatively affect the separation of variables approach.

To avoid this instability, we can define new functions Qn for n 6= 0 as

Qn(r) = Kn(λ r)− 2|n|−1 (|n|−1)!
λ |n|r|n|

. (44)

The function Qn has a different leading order term from Kn as λ and r go to zero but is still a
solution of (24) as it is a linear combination of Kn and r−|n|. As noted above, the system (30)
is well conditioned for the functions 1 and K0(λ r). Therefore, the naı̈ve approach works for
the zero mode, for the particular conditions we have set at infinity. It is convenient, however,
to define Q0 as

Q0(r) = K0(λ r)+ log(r) . (45)
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This function is closely related to the Green’s function for the modified biharmonic equation.
As before, the ill-conditioning of the coefficient recovery problem (29) is improved

using the pair of functions (Qn,Kn) as the basis. For |n|> 2, we obtain a system of the form

A(Qn,Kn,R) =(
R−|n|+2dn(λ )(1+O(λ 2R2)) R−|n|cn(λ )(1+O(λ 2R2))

(−|n|+2)R−|n|+1dn(λ )(1+O(λ 2R2)) −|n|R−|n|−1cn(λ )(1+O(λ 2R2))

)
, (46)

where dn(λ ) =−2|n|−3(|n|−2)!λ−|n|+2. As λ goes to zero, the normalized columns of this
system matrix do not converge to the same vector, as in the above. Further, as R goes to
zero, the columns do converge but the effect is not as dramatic as for the pair (r−|n|,Kn).
The problem of recovering the coefficients is therefore more stable for the basis (Qn,Kn)
than it is for the basis (r−|n|,Kn), which we verify numerically in the next section.

Remark 4 It is simple to evaluate Qn(r) stably. For small r, the power series for Kn, with
the first term omitted, may be used. For larger r, there is no fear of numerical cancellation
and the formula (44) may be used directly, along with existing software for evaluating Kn.
We choose the pair (Qn,Kn) as opposed to (r−|n|,Qn) because Qn and Kn have different
asymptotic behavior for large r.

Remark 5 If the functions Kn and r−|n| are used as a basis, their asymptotic similarity in the
small R regime will cause other numerical problems for a solution with terms like Qn. Sup-
pose that Kn and r−|n| are used to evaluate Qn. For small r, the function Qn(r) is O(r−|n|+2),
while the functions Kn(r) and r−|n| are O(r−|n|). Therefore, there is significant numerical
cancellation when evaluating Qn(r) via the formula (44). We demonstrate this effect as well
in the next section.

Before proceeding to the numerical experiments, we briefly describe the edge cases, i.e.
the matrices for |n| ≤ 2. When |n| = 2, the pair (Qn,Kn) results in a linear system of the
form

A(Q2,K2,R)

 −1
2
+O(R2λ 2| log(λR)|) 2

λ 2R2 +O(1)

−1
4

λ 2R log(λR)+O(λ 2R) − 4
λ 2R3 +O(λ 2R| log(λR)|)

 . (47)

The columns of this matrix, after normalization, do not become colinear as either λ or R
tends to zero. For the case that |n| = 1, the pair (Qn,Kn) results in a linear system of the
form

A(Q1,K1,R) =

 1
2

λR log(λR)+O(λR)
1

λR
+O(λR| log(λR)|)

1
2

λ log(λR)+
(
λ +R2) − 1

λR2 +O(λ | log(λR)|)

 , (48)

which has nearly colinear columns after normalization as R goes to zero. The normalized
columns are not colinear in the limit as λ goes to zero. Finally, for the case n = 0, the pair
(Qn,Kn) results in a linear system of the form(− log(λ/2)− γ +O(λ 2R2| log(λR)| − log(λR/2)− γ +O(λ 2R2| log(λR)|

−1
2

λ 2R log(λR)+O(λ 2R) − 1
R
+O(λ 2R| log(λR)|)

)(
αn
βn

)
=

(
fn
gn

)
.

(49)
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As λ goes to zero, the columns of this matrix slowly become colinear after normalization.
As R goes to zero, the normalized columns do not become colinear.

4 Numerical tests

In this section we present some numerical experiments which reinforce the ideas of the
previous section. The source code used for these calculations is available online [3]. The
Bessel functions were evaluated using routines from FMMLIB2D [14]. Discrete Fourier
transforms were computed using the FFTPACK [25]. To compute condition numbers, we
used the singular value decomposition routine from EISPACK [13]. All code was written
in Fortran using double precision arithmetic and compiled with the gfortran compiler on
Linux.

4.1 Condition numbers

For the first test, we verify the analytical observations about the condition numbers of the
matrices described in the previous section. For a pair of functions (F(r),G(r)), define the
matrix A(F,G,R) as in (34). Let B̃ denote the matrix B with its columns normalized to unit
length. We compute the condition number of Ã(F,G,R) where (F,G) is taken to be each of
the bases (r|n|, In(λ r)), (r|n|,Pn(λ r)), (r−|n|,Kn(λ r)), and (Qn(λ r),Kn(λ r)) for a range of
values of n, λ , and R. To observe the effect of changing the radius of the domain, we run
experiments with λ fixed (at λ = 0.5) and, for each j from −24 to 8, ten values of R drawn
uniformly at random from the interval [2 j,2 j+1]. Likewise, to observe the effect of changing
the parameter λ , we run experiments with R fixed (at R= 0.5) and, for each j from−24 to 8,
ten values of λ drawn uniformly at random from the interval [2 j,2 j+1]. In order to compare
these, we plot the condition number as a function of the product λR.

In fig. 1, we plot the results for the interior problem. The new basis (r|n|,Pn) has smaller
condition numbers than the basis (r|n|, In), as either λ or R goes to zero. In the limit as λ

goes to zero, we see that the condition number remains roughly constant for (r|n|,Pn). In the
limit as R goes to zero, there is some growth in the condition number for (r|n|,Pn), except for
the case n = 0, where it again remains roughly constant. For the basis (r|n|, In), the condition
number grows as either λ or R tends to zero and is larger than for the basis (r|n|,Pn). The
condition number tends to grow faster as R goes to zero compared to the growth as λ goes
to zero, except for the case n = 0, in which we see the opposite trend. These results agree
well with the analysis of section 3.

In fig. 2, we plot the results for the exterior problem. The new basis (Qn,Kn) generally
has smaller condition numbers than the basis (r−|n|,Kn), as either λ or R goes to zero. In
the limit as λ goes to zero, we see that the condition number remains roughly constant for
(Qn,Kn). In the limit as R goes to zero, there is some growth in the condition number for
(Qn,Kn), except for the cases n = 0 and n = 2, where it again remains roughly constant.
For the basis (r−|n|,Kn), the condition number grows faster as R goes to zero compared to
the growth as λ goes to zero. The condition number for the basis (r−|n|,Kn) does grow as λ

tends to zero, except in the case that n = 0, for which the condition number remains roughly
constant. Note that for n = 0 we have used the basis (log(r),K0) as this set of functions is
required to represent the synthetic solution used for the error analysis of the next section.
Again, these results agree well with the analysis of section 3.
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(c) n = 2

10−6 10−4 10−2 100 102

λR

101

103

105

107

109

1011

1013

1015

1017

κ

(rn, Pn) , λ→ 0

(rn, In) , λ→ 0

(rn, Pn) , r → 0

(rn, In) , r → 0
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Fig. 1: We plot the condition number of the linear system (34) (after scaling the columns)
for various values of n as a function of λR.

Remark 6 In figs. 1 and 2, we observe two distinct behaviors when λ tends to zero for a fixed
R and vice-versa. This phenomenon is related to the two relevant scales of the bi-Helmholtz
kernel noted in remark 1, though more extreme: whereas the bi-Helmholtz operator is the
composition of two operators with their own dimensionless parameters, the modified bihar-
monic operator is the composition of two operators, one of which is scale-invariant and the
other is not. In the next set of experiments, we see that, in many applications, there is only
one relevant scaling for the modified biharmonic equation.
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Fig. 2: We plot the condition number of the linear system (34) (after scaling the columns)
for various values of n as a function of λR.

4.2 Error plots for known solution

In order to test the practical effect of the ill-conditioning seen in the last section, we use the
separation of variables procedure to solve the modified biharmonic equation (1) on a disk
with boundary conditions corresponding to a known solution. We construct this solution
using the free-space Green’s function for the modified biharmonic equation, which is defined
as

G (x,y) =− 1
2πλ 2 (K0(λρ)+ log(ρ)) , (50)

where ρ =
√

(x1− y1)2 +(x2− y2)2. The solution is then set to be
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u(x;λ ) =
ns

∑
j=1

λ
2c jG (x,s j)+λd j∂v j,1G (x,s j)+q j∂v j,2v j,3G (x,s j) , (51)

where the s j are ns = 100 “source” points located outside of the domain, the c j are drawn
uniformly randomly from [−1,1], the d j and q j are drawn uniformly randomly from [0,1],
and the vectors v j,1,v j,2,v j,3 are defined by drawing the entries uniformly at random from
[−1/2,1/2] and normalizing. We note that the λ 2 and λ scales in front of the c j and d j are
included to ensure that these terms are of roughly the same size as λ shrinks.

To implement separation of variables, we discretize the boundary with M = 100 points,
so that N = 49 (the separation of variables expansion runs from −N to N + 1 as in sec-
tion 2.3). We evaluate the function u(x;λ ) and its normal derivative on the boundary of the
disk and compute their Fourier coefficients, i.e. the values fn and gn as in (20), (21), using
the FFT. We then solve for the coefficients αn and βn by inverting the linear system(

Fn(R) Gn(R)
F ′n(R) G′n(R)

)(
αn
βn

)
=

(
fn
gn

)
, (52)

where (Fn(r),Gn(r)) is an appropriate pair of basis functions. For the sake of stability, the
inversion is performed using Gaussian elimination with complete pivoting. Once the coef-
ficients αn and βn have been computed, the approximate solution û can be evaluated using
the formula

û(x) =
N+1

∑
n=−N

(αnFn(ρ)+βnGn(ρ))einθ , (53)

where (ρ,θ) are the polar coordinates of x. The derivatives of û can be obtained by differ-
entiating this expression.

To measure the performance of the separation of variables method, we evaluate û and
its first and second derivatives at nt = 100 “target” points ti located inside the domain. We
then define three error measures

Eu =

√
∑

nt
i=1(u(ti;λ )− û(ti))

2

∑
nt
i=1 u(ti;λ )2 , (54)

Eg =

√
∑

nt
i=1(ux(ti;λ )− ûx(ti))

2 +(uy(ti;λ )− ûy(ti))
2

∑
nt
i=1 ux(ti;λ )2 +uy(ti;λ )2 , (55)

Eh =

√
∑

nt
i=1(uxx(ti;λ )− ûxx(ti))

2 +(uxy(ti;λ )− ûxy(ti))
2 +(uyy(ti;λ )− ûyy(ti))

2

∑
nt
i=1 uxx(ti;λ )2 +uxy(ti;λ )2 +uyy(ti;λ )2 , (56)

which represent the relative error in the solution, gradient, and Hessian, respectively.
As in the previous section, we run the tests with a variety of values for the radius of the

disk R and the parameter λ . To observe the effect of changing the radius of the domain, we
run experiments with λ fixed (at λ = 0.5) and, for each j from −24 to 8, ten values of R
drawn uniformly at random from the interval [2 j,2 j+1]. Likewise, to observe the effect of
changing the parameter λ , we run experiments with R fixed (at R = 0.5) and, for each j from
−24 to 8, ten values of λ drawn uniformly at random from the interval [2 j,2 j+1]. In order
to compare these, we plot the error measures Eu, Eg, and Eh as functions of the product λR.
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(b) Exterior problem geometry

Fig. 3: Sample geometries for the interior and exterior problems with R = 0.5. The targets
are marked by crosses and the sources by circles.

For the interior problem, the source points are drawn uniformly at random from the box
[−2R,2R]× [−2R,2R] outside of the disk of radius 2R. With this placement of source points,
the length N = 49 expansion for û should be sufficient for approximately machine precision
accuracy, based on standard multipole estimates [16,9]. The target points are drawn uni-
formly at random from the disk of radius R. We plot a sample arrangement of the source and
target points for the interior problem in fig. 3a.

Similarly, for the exterior problem, the source points are drawn uniformly at random
from the disk of radius R/2. This placement is again chosen so that the length N = 49
expansion for û is sufficient for approximately machine precision accuracy. The target points
are drawn uniformly at random from the box [−2R,2R]× [−2R,2R] outside of the disk of
radius R. We plot a sample arrangement of the source and target points for the exterior
problem in fig. 3b.

(a) u (b) ux (c) uxy

Fig. 4: Heatmaps of the exact solution u and select derivatives for the interior problem with
R = 0.5 and λ = 2−24.

In figs. 4 and 5 we plot a sample exact solution u and some select derivatives for the
interior and exterior problems, respectively. For the following error plots, we consider the
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(a) u (b) ux (c) uxy

Fig. 5: Heatmaps of the exact solution u and select derivatives for the exterior problem with
R = 0.5 and λ = 2−24.

error in approximating these solutions using the bases we have discussed above as well as
using what we call the “exact difference”. We include the exact difference figure to empha-
size that it is not only the ability to recover αn and βn that causes trouble using the naı̈ve
bases. Because u is defined in terms of the Green’s function G , which is simply a scaled
sum of the Green’s functions for the Laplace and modified Helmholtz equations, we could
reasonably evaluate u by evaluating these parts separately and combining them in the end.
Let uL and uH be defined as

uL(x;λ ) =
1

2πλ 2

ns

∑
j=1

λ
2c j log‖x− s j‖2 +λd j∂v j,1 log‖x− s j‖2 +q j∂v j,2v j,3 log‖x− s j‖2

(57)
and

uH(x;λ )=− 1
2πλ 2

ns

∑
j=1

λ
2c jK0(λ‖x−s j‖2)+λd j∂v j,1 K0(λ‖x−s j‖2)+q j∂v j,2v j,3 K0(λ‖x−s j‖2) .

(58)
The “exact difference” error below is the error in evaluating u as the difference uH − uL in
floating point arithmetic.

In fig. 6, we plot the error measures as functions of λR for both the limit as R goes to
zero with λ fixed and vice-versa, for the interior problem. The behavior of the two limits is
similar, in contrast with the condition numbers of the previous section. This is an indication
that λR is the relevant figure for applications. We see that the new basis (r|n|,Pn) is able
to achieve high accuracy, even as λR tends to zero. We note that Eu is around machine
precision, and there is some precision loss for the errors of the derivatives, Eg and Eh. When
using the naı̈ve basis, (r|n|, In), on the other hand, there is significant loss of accuracy as
λR goes to zero. The error in evaluating the exact difference between the harmonic and
modified Helmholtz parts agrees well with the naı̈ve basis (r|n|, In) in the small λR limit.
This error for the exact difference shows that there is a fundamental problem in using the
basis (r|n|, In) to represent such solutions. For large λR, the exact difference is capable of
near machine precision in even the derivatives, as the procedure does not really involve
numerical differentiation. We see similar behavior for the exterior problem in fig. 7.
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(f) Eh as R goes to zero.

Fig. 6: Interior problem. In the top row, we plot the error measures as functions of λR for
R = 0.5 as λ goes to zero. In the bottom row, we plot the error measures as functions of λR
for λ = 0.5 as R goes to zero.

5 Discussion

In the preceding, we have shown that the new bases (r|n|,Pn) and (Qn,Kn) offer signifi-
cant advantages over the naı̈ve approach when solving the modified biharmonic equation
on a disk. We now show how these functions can be used to efficiently solve the modified
biharmonic equation (1) on more complex geometries.

5.1 Integral equations

Because (1) is a homogeneous, fourth order equation, it is well suited to solution using an
integral equation formulation. We do not attempt a review of the literature here but point to
[7,15,8,4,18] for some representative examples. In an integral equation method, the solution
on any domain Ω is represented by a layer potential with unknown densities defined on the
boundary ∂Ω , i.e.

u(x) =
∫

∂Ω

K1(x,y)σ1(y)+K2(x,y)σ2(y)dS(y) , (59)

where the kernels K1 and K2 are typically defined in terms of directional derivatives of the
free-space Green’s function G . For example, in [18], the kernels are K1 = −Gνν +Gττ and
K2 =−2Gννν +3(∆ −λ 2)Gν +2λ 2Gν , where ν and τ represent the normal and tangential
directions at y, respectively.



A stabilized separation of variables method for the modified biharmonic equation 17

10−6 10−3 100

λR

10−14

10−12

10−10

10−8

10−6

10−4

10−2

E
u

(Qn, Kn)

(r−n, Kn)

Exact Difference

(a) Eu as λ goes to zero.

10−6 10−3 100

λR

10−16

10−13

10−10

10−7

10−4

10−1

E
g

(Qn, Kn)

(r−n, Kn)

Exact Difference

(b) Eg as λ goes to zero.

10−6 10−3 100

λR

10−13

10−10

10−7

10−4

10−1

102

E
h

(Qn, Kn)

(r−n, Kn)

Exact Difference

(c) Eh as λ goes to zero.

10−6 10−3 100

λR

10−13

10−10

10−7

10−4

10−1

E
u

(Qn, Kn)

(r−n, Kn)

Exact Difference

(d) Eu as R goes to zero.

10−6 10−3 100

λR

10−14

10−11

10−8

10−5

10−2

101

E
g

(Qn, Kn)

(r−n, Kn)

Exact Difference

(e) Eg as R goes to zero.

10−6 10−3 100

λR

10−13

10−10

10−7

10−4

10−1

E
h

(Qn, Kn)

(r−n, Kn)

Exact Difference

(f) Eh as R goes to zero.

Fig. 7: Exterior problem. In the top row, we plot the error measures as functions of λR for
R = 0.5 as λ goes to zero. In the bottom row, we plot the error measures as functions of λR
for λ = 0.5 as R goes to zero.

Continuing the example, the authors of [18] then impose gradient boundary conditions
on u, i.e. they set ∂νx u = f and ∂τx u = g for some functions f and g defined on the boundary,
where νx and τx denote the normal and tangential directions at a point x on the boundary.
These boundary conditions are of physical interest because they correspond to “no-slip”
boundary conditions for a stream function representation of a fluid flow. Plugging the form
(59) into the boundary conditions, we obtain the integral equation

(
D11(x) D12(x)

0 D22(x)

)(
σ1(x)
σ2(x)

)
+
∫

∂Ω

(
K11(x,y) K12(x,y)
K21(x,y) K22(x,y)

)(
σ1(y)
σ2(y)

)
dS(y) =

(
f (x)
g(x)

)
,

(60)
where K11 = ∂νx K1, K12 = ∂νx K2, K21 = ∂τx K1, and K22 = ∂τx K2. See [18] for details, includ-
ing a simple preconditioner for turning (60) into a well-conditioned second kind integral
equation and explicit formulae for the kernels Ki j.

In a Nyström discretization of the integral equation (60), the solution is represented by
its values at points on the curve ∂Ω which are used for an integration rule. The basis of a
Nyström method is then a numerical quadrature of the integral operator on the curve ∂Ω .
Typically, different integration rules are required for smooth, weakly singular, and singular
integral kernels. Fortunately, a number of quadrature rules are available for handling these
singularities with high order accuracy [2,19,5,17].



18 T. Askham

Let xi denote the points on ∂Ω of the Nyström discretization, σ1i =σ1(xi), σ2i =σ2(xi),
fi = f (xi), and gi = g(xi). In a slight abuse of notation, the quadrature rule provides weights
wi j such that

(
D11(xi) D12(xi)

0 D22(xi)

)(
σ1i
σ2i

)
+∑

j
wi j

(
K11(xi,x j) K12(xi,x j)
K21(xi,x j) K22(xi,x j)

)(
σ1 j
σ2 j

)
=

(
fi
gi

)
, (61)

is an accurate approximation of the original integral equation at each point xi. The above
is an abuse of notation because the kernels are not often defined when x = y, so that the
formula is in general a function of the kernel and the boundary. A key feature of these
integral rules is that the weight wi j is typically a function of j alone for points xi and x j
which are sufficiently far apart. Therefore, much of the sum (61) is of a form which is
amenable to a fast multipole method (FMM) — which we outline in the next section — so
that the operator on the left-hand-side of (61) may be applied rapidly. Combined with an
iterative solver such as GMRES [23], this provides a fast solution method for the densities
σ1 and σ2. The FMM can also be utilized to efficiently evaluate the formula for u, i.e. (59),
at points inside the domain [17,20,22].

5.2 Fast sums

Let xi be a set of N points in space. Suppose that we would like to evaluate the sum

u(xi) =
N

∑
j 6=i

λ
2c jG (xi,x j)+λd j∂v j,1G (xi,x j)+q j∂v j,2v j,3G (xi,x j) , (62)

for each xi efficiently. Direct evaluation would be an O(N2) calculation. When performing
the analogous sum with the Laplace Green’s function, the original FMM [16,6] provides a
stable O(N) algorithm. We do not seek to review the details of an FMM algorithm here, but
we note that such a method depends on a few key parts: a formula for representing the sum
due to a localized subset of the points (a multipole expansion), a formula for representing
the sum due to points outside of a disk (a local expansion), formulae for translating between
these representations (translation operators), and a hierarchical organization of the points in
space. For details, see [16,6].

Following the results of the previous section, we see that an expansion in terms of the
functions (Qn,Kn) provides a stable representation for the sum due to points contained in-
side a disk when evaluated at points sufficiently far from that disk. Similarly, an expansion
in terms of the functions (r|n|,Pn) can be used to stably represent the sum due to points lo-
cated sufficiently far outside of a disk. These are then our multipole and local expansions,
respectively.

Starting with the formulae for translating multipole and local expansions for the Laplace
and modified Helmholtz Green’s functions, which are included in appendix A, it is straight-
forward to derive translation operators for the (Qn,Kn) and (r|n|,Pn) expansions. The center
of a (Qn,Kn) multipole expansion can be shifted using the following formula:

Lemma 3 Suppose that

φ(x) =
∞

∑
l=−∞

(
alQl(ρ

′)+blKl(λρ
′)
)

eilθ ′ , (63)
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where (ρ ′,θ ′) are the polar coordinates of x with respect to the point x0, is a multipole
expansion of the potential due to a charge density which is contained inside the disk of
radius R about x0. Let (ρ0,θ0) be the polar coordinates of x0 with respect to the origin.
Then, for x outside the disk of radius R+ρ0, we have

φ(x) =
∞

∑
l=−∞

(clQl(ρ)+dlKl(λρ))eilθ , (64)

where (ρ,θ) are the coordinates of x with respect to the origin. We have that c0 = a0 and

d0 =
−1

∑
m=−∞

(am +bm)I−m(λρ0)e−i(l−m)θ0 +a0P0(λρ0)+b0I0(λρ0)

+
∞

∑
m=1

(am +bm)I−m(λρ0)e−i(l−m)θ0 . (65)

For l > 0 the translated coefficients are given by

cl =
l

∑
m=0

am

(
λρ0

2

)l−m e−i(l−m)θ0

(l−m)!
(66)

and

dl =
−1

∑
m=−∞

(am +bm)Il−m(λρ0)e−i(l−m)θ0

+
l

∑
m=0

(amPl−m(ρ0)+bmIl−m(λρ0))e−i(l−m)θ0

+
∞

∑
m=l+1

(am +bm)Il−m(λρ0)e−i(l−m)θ0 . (67)

For l < 0 the translated coefficients are given by

cl =
0

∑
m=l

am

(
λρ0

2

)|l−m| e−i(l−m)θ0

|l−m|! (68)

and

dl =
l−1

∑
m=−∞

(am +bm)Il−m(λρ0)e−i(l−m)θ0

+
0

∑
m=l

(amPl−m(ρ0)+bmIl−m(λρ0))e−i(l−m)θ0

+
∞

∑
m=1

(am +bm)Il−m(λρ0)e−i(l−m)θ0 . (69)

A (Qn,Kn) multipole expansion can be converted into a (r|n|,Pn) local expansion using
the following formula:
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Lemma 4 Suppose that

φ(x) =
∞

∑
l=−∞

(
alQl(ρ

′)+blKl(λρ
′)
)

eilθ ′ , (70)

where (ρ ′,θ ′) are the polar coordinates of x with respect to the point x0, is a multipole
expansion of the potential due to a charge density which is contained inside the disk of
radius R < |x0| about x0. Let (ρ0,θ0) be the polar coordinates of x0 with respect to the
origin. Then, for x within the disk of radius ρ0−R, we have

φ(x) =
∞

∑
l=−∞

(
clPl(λρ)+dl(λρ)|l|

)
eilθ , (71)

where (ρ,θ) are the coordinates of x with respect to the origin. For all l, we have that

cl =
∞

∑
m=−∞

(−1)m(am +bm)Kl−m(λρ0)ei(l−m)θ0 . (72)

For l > 0, we have

dl =
1

2l l!

0

∑
m=−∞

(−1)m(amQl−m(ρ0)+bmKl−m(λρ0))e−i(l−m)θ0

+
1

2l l!

∞

∑
m=1

(−1)m(am +bm)Kl−m(λρ0)e−i(l−m)θ0 . (73)

For l = 0, we have

d0 =
∞

∑
m=−∞

(−1)m(amQ−m(ρ0)+bmK−m(λρ0))eimθ0 (74)

For l < 0, we have

dl =
1

2|l||l|!
−1

∑
m=−∞

(−1)m(am +bm)Kl−m(λρ0)e−i(l−m)θ0

+
1

2|l||l|!
∞

∑
m=0

(−1)m(amQl−m(ρ0)+bmKl−m(λρ0))e−i(l−m)θ0 . (75)

Finally, we can shift the center of a local expansion in the (r|n|,Pn). The following trans-
lation operator is phrased in terms of a parent and child box, which is the typical setting
for an FMM. A child box is any of the four boxes resulting from dividing a parent box into
equal square quadrants. We have

Lemma 5 Suppose that

Ψ(x) =
∞

∑
l=−∞

(alPl(ρ)+bl(λρ)|l|)eilθ , (76)

where (ρ,θ) are the polar coordinates of x with respect to the origin, is a local expansion
for a parent box centered at the origin. Let (ρ0,θ0) be the polar coordinates of the center x0
of a child box with respect to the origin. Then, for x inside the child box, we have
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Ψ(x) =
∞

∑
l=−∞

(clPl(ρ
′)+dl(λρ

′)|l|)eilθ ′ , (77)

where (ρ ′,θ ′) are the coordinates of x with respect to the child’s center x0. For all l, we
have

cl =
∞

∑
m=−∞

amIl−m(λρ0)e−i(l−m)θ0 . (78)

For l > 0 , we have

dl =
1

2l l!

l−1

∑
m=−∞

amIl−m(λρ0)e−i(l−m)θ0

+
1

2l l!

∞

∑
m=l

amPl−m(λρ0)e−i(l−m)θ0

+
∞

∑
m=l

(
m
l

)
bmρ

|l−m|
0 e−i(l−m)θ0 . (79)

For l = 0 , we have

d0 =
∞

∑
m=−∞

amP−m(λρ0)eimθ0 +
∞

∑
m=−∞

bmρ
|m|
0 eimθ0 . (80)

For l < 0 , we have

dl =
1

2|l||l|!
l

∑
m=−∞

amPl−m(λρ0)e−i(l−m)θ0

+
1

2|l||l|!
∞

∑
m=l+1

amIl−m(λρ0)e−i(l−m)θ0

+
l

∑
m=−∞

(|m|
|l|

)
bmρ

|l−m|
0 e−i(l−m)θ0 . (81)

With the above translation operators in hand, the new basis functions derived in this
paper result in a stable FMM for the modified biharmonic equation. This FMM enables both
the fast solution of the system (61) and the fast evaluation of the layer potential (59). Such an
FMM has been implemented by the author and the application of that FMM implementation
to numerical fluid simulations will be reported at a later date.

6 Conclusion

We have presented new special functions for representing solutions of the modified bihar-
monic equation on both the inside and outside of a disk. Numerical experiments demonstrate
the superiority of using these functions over the naı̈ve approach, which would employ more
familiar functions associated with the Laplace and modified Helmholtz equations. Further,
we show how such functions can be used to aid in the solution of the modified biharmonic
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equation on more complex geometries with an integral equation approach. We also present,
in section 5.2, translation operators for multipole and local expansions using our new radial
basis functions. These are key components of FMMs [6,16].

The basic approach of the present paper applies to a number of other Green’s functions
for high-order PDEs, assuming they can be expressed as the difference of Green’s functions
for lower order PDEs. This includes, for example, the Green’s function for the bi-Helmholtz
equation (4). Since the essential analysis concerns radial functions only, the approach ex-
tends naturally to three dimensions. We will explore these problems in subsequent work.

Acknowledgements T. Askham would like to thank Leslie Greengard for many useful discussions.

Appendix A. Analytical preliminaries

For the Laplace kernel, the original FMM is based on the manipulation of multipole and Taylor expansions.
The center of a multipole expansion may be shifted using this formula:

Lemma 6 (Adapted from Lemma 2.3 of [16].) Suppose that

φ(z) = a0 log(z− z0)+
∞

∑
l=1

al

(z− z0)l (82)

is a multipole expansion of the potential due to a charge density which is contained inside the disk of radius
R about z0. Then, for z outside the disk of radius R+ |z0| about the origin

φ(z) = b0 log(z)+
∞

∑
l=1

bl

zl , (83)

where b0 = a0 and

bl =

(
l

∑
m=1

amzl−m
0

(
l−1
m−1

))
− a0zl

0
l

, (84)

using the standard notation for binomial coefficients. We also have the following bound for the truncation
error. With p≥ 1, ∣∣∣∣∣φ(z)−b0 log(z)−

p

∑
l=1

bl

zl

∣∣∣∣∣≤ F/2π

1− (|z0|+R)/|z|

( |z0|+R
|z|

)p+1

, (85)

where F is the L1 norm of the density.

A multipole expansion may be converted into a Taylor expansion using the following formula:

Lemma 7 (Adapted from Lemma 2.4 of [16].) Suppose that a charge density is contained inside the disk of
radius R about z0 with |z0|> (1+c)R for some c > 1. Let the multipole expansion due to this density be given
as in Lemma 6. Then, this multipole expansion converges inside the disk of radius R about the origin and can
be represented by a power series there:

φ(z) =
∞

∑
l=1

blzl (86)

where,

b0 =
∞

∑
m=1

am

zm
0
(−1)m +a0 log(−z0) , (87)

and

bl =
1
zl

0

(
∞

∑
m=1

am

zm
0

(
l +m−1

m−1

)
(−1)m

)
− a0

zl
0 l

, (88)
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for l ≥ 1. There is a similar error bound for this lemma, see [16] for details. Suppose that the charge density
is supported in a box and the evaluation points z are taken in another. In the case that these two boxes are
well separated from each other, we have∣∣∣∣∣φ(z)− p

∑
l=0

blzl

∣∣∣∣∣≤CF
(

1
2

)p

, (89)

where F is as in Lemma 6 and C is a constant.

The center of a Taylor expansion can be shifted using the following formula:

Lemma 8 (Adapted from Lemma 2.5 in [16]) Let z0, z, and al for l = 0,1, . . . , p be complex. Then

p

∑
l=0

al(z− z0)
l =

p

∑
m=0

(
p

∑
l=m

al

(
l
m

)
(−z0)

l−m

)
zm . (90)

This formula is exact.

The FMM for the modified Helmholtz kernel is based on the manipulation of expansions in the Bessel
functions In and Kn. The formula for shifting the center of an expansion in the Kn functions is:

Lemma 9 (Adapted from [9].) Suppose that

φ(x) =
∞

∑
l=−∞

alKl(λρ
′)eilθ ′ , (91)

where (ρ ′,θ ′) are the polar coordinates of x with respect to the point x0, is a multipole expansion of the
potential due to a charge density which is contained inside the disk of radius R about x0. Let (ρ0,θ0) be the
polar coordinates of x0 with respect to the origin. Then, for x outside the disk of radius R+ρ0, we have

φ(x) =
∞

∑
l=−∞

blKl(λρ)eilθ , (92)

where (ρ,θ) are the coordinates of x with respect to the origin and the translated coefficients are given by

bl =
∞

∑
m=−∞

amIl−m(λρ0)e−i(l−m)θ0 . (93)

An expansion in the Kn functions may be converted into an expansion in the In functions using the
formula:

Lemma 10 (Adapted from [9].) Suppose that

φ(x) =
∞

∑
l=−∞

alKl(λρ
′)eilθ ′ , (94)

where (ρ ′,θ ′) are the polar coordinates of x with respect to the point x0, is a multipole expansion of the
potential due to a charge density which is contained inside the disk of radius R < |x0| about x0. Let (ρ0,θ0)
be the polar coordinates of x0 with respect to the origin. Then, for x within the disk of radius ρ0−R, we have

φ(x) =
∞

∑
l=−∞

bl Il(λρ)eilθ , (95)

where (ρ,θ) are the coordinates of x with respect to the origin and the translated coefficients are given by

bl =
∞

∑
m=−∞

am(−1)mKl−m(λρ0)e−i(l−m)θ0 . (96)

We phrase the following translation operator in terms of a parent and child box. A child box is any of
the four boxes resulting from dividing a parent box into equal square quadrants. The center of an expansion
in the In functions may be shifted using the following formula:
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Lemma 11 (Adapted from [9].) Suppose that

Ψ(x) =
∞

∑
l=−∞

al Il(λρ)eilθ , (97)

where (ρ,θ) are the polar coordinates of x with respect to the origin, is a local expansion for a parent box
centered at the origin. Let (ρ0,θ0) be the polar coordinates of the center x0 of a child box with respect to the
origin. Then, for x inside the child box, we have

Ψ(x) =
∞

∑
l=−∞

bl Il(λρ
′)eilθ ′ , (98)

where (ρ ′,θ ′) are the coordinates of x with respect to the child’s center x0 and the new local expansion
coefficients are given by

bl =
∞

∑
m=−∞

amIl−m(λρ0)e−i(l−m)θ0 . (99)
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12. Fourier, J.: Mémoire sur la propagation de la chaleur dans les corps solides. Nouveau Bulletin des
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