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Abstract. The dynamic mode decomposition (DMD) has become a leading tool for data-driven modeling of
dynamical systems, providing a regression framework for fitting linear dynamical models to time-
series measurement data. We present a simple algorithm for computing an optimized version of
the DMD for data which may be collected at unevenly spaced sample times. By making use of
the variable projection method for nonlinear least squares problems, the algorithm is capable of
solving the underlying nonlinear optimization problem efficiently. We explore the performance of
the algorithm with some numerical examples for synthetic and real data from dynamical systems
and find that the resulting decomposition displays less bias in the presence of noise than standard
DMD algorithms. Because of the flexibility of the algorithm, we also present some interesting new
options for DMD-based analysis.
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1. Introduction. Suppose that zj ∈ Cn are snapshots of a dynamical system ż(t) = f(z(t))
at equispaced times tj = j∆t. Let A be the best fit linear operator which maps each zj to
zj+1. The dynamic mode decomposition (DMD) is defined as the set of eigenvector, eigenvalue
pairs of A. The DMD is then a way of decomposing the data into dominant modes, each
with an associated frequency of oscillation and rate of growth/decay. This is an alternative
decomposition to the proper orthogonal decomposition (POD): whereas the DMD provides
dynamical information about the system but the modes are not orthogonal, the POD provides
orthogonal modes but no dynamical information. As such, the DMD is an enabling data-driven
modeling strategy since it provides a best-fit, linear characterization of a nonlinear dynamical
system from data alone.

The DMD has its roots in the fluid dynamics community, where it was applied to the
analysis of numerical simulations and experimental data of fluid flows [37, 41]. Over the past
decade, its popularity has grown and it has been applied as a diagnostic tool, as a means
of model order reduction, and as a component of optimal controller design for a variety of
dynamical systems. The DMD also has connections to the Koopman spectral analysis of
nonlinear dynamical systems, a line of inquiry which has been pursued in, inter alia, [37, 5,
29, 44]. In particular, the DMD shows promise as a tool for the analysis of general nonlinear
systems. We will not stress this aspect here but rather focus on the DMD as an algorithm for
approximating data by a linear system.

A well-studied pitfall of the DMD is that the computed eigenvalues are biased by the
presence of sensor noise [21, 12]. Intuitively, this is a result of the fact that the standard
algorithms treat the data pairwise, i.e. snapshot to snapshot rather than as a whole, and
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favor one direction (forward in time). In [12], Dawson et al. present several methods for
debiasing within the standard DMD framework. These methods have the advantage that
they can be computed with essentially the same set of robust and fast tools as the standard
DMD.

As an alternative, the optimized DMD of [11] treats all of the snapshots of the data
at once. This avoids much of the bias of the original DMD but requires the solution of a
(potentially) large nonlinear optimization problem. It is believed that the “nonconvexity of
the optimization [required for the optimized DMD] potentially limits its utility” [12] but the
results of this paper suggest that the optimized DMD should be the DMD algorithm of choice
in many settings. We will present some efficient algorithms for computing the optimized DMD
and discuss its properties.

The primary computational tool at the heart of these algorithms is the variable projection
method [17]. To apply variable projection, the DMD is rephrased as a problem in exponential
data fitting (specifically, inverse differential equations), an area of research which has been
extensively developed and has many applications [16, 34]. The variable projection method
leverages the special structure of the exponential data fitting problem, so that many of the
unknowns may be eliminated from the optimization. An additional benefit of these tools is
that the snapshots of data no longer need to be taken at regular intervals, i.e. the sample times
do not need to be equispaced. We suggest a pair of algorithms, each a modified version of
the original algorithm of [16], for computing the optimized DMD and an initialization scheme
based on the standard DMD.

The DMD with unevenly spaced data has been considered previously [43, 19, 26] with
applications to efficient sampling strategies and data sets with missing points. The tools used
in these previous studies have a lot in common with the present work. Therefore, we orient
the current paper in relation to these in subsection 2.3.5.

The rest of this paper is organized as follows. In section 2, we present some of the relevant
preliminaries of variable projection and the DMD. In section 3, we present the definition,
algorithms, and an initialization scheme for the optimized DMD. In section 4, we demonstrate
the low inherent bias of the algorithm in the presence of noise on some simple examples and
present some applications of the method to both synthetic and real data sets, some with
snapshots whose sample times are unevenly spaced. The final section contains some concluding
thoughts and ideas for further research.

2. Preliminaries.

2.1. Notation. Throughout this paper we use mostly standard notation, with some MAT-
LAB style notation for convenience. Matrices are typically denoted by bold, capital letters
and vectors by bold, lower-case. Let A and B be matrices and v a vector of length m. Then

• vi denotes the ith entry of v;
• Ai,j denotes the entry in the ith row and jth column of A;
• vi denotes the ith vector in a sequence of vectors;
• Ā denotes the entrywise complex conjugate of A;
• Aᵀ denotes the transpose of A, which satisfies Aᵀ

i,j = Aj,i;

• A∗ denotes the complex conjugate transpose of A, which satisfies A∗ = Āᵀ;
• A† denotes the Moore-Penrose pseudoinverse of A, which satisfies AA†A = A,
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A†AA† = A†, (AA†)∗ = AA†, and (A†A)∗ = A†A;
• A(i1 : i2, j1 : j2) denotes the submatrix corresponding to the i1th through i2th rows

and j1th through j2th columns of A.
• A(:, j) denotes the vector given by the jth column of A;
• A(:) denotes the vector which results by stacking all of the columns of A, taken in

order;
• A = diag(v) denotes the square matrix of size m × m which satisfies Ai,i = vi and
Ai,j = 0 for i 6= j;
• and A⊗B denotes the Kronecker of A and B, e.g. if A is 2× 2 then

(1) A⊗B =

(
A1,1B A1,2B
A2,1B A2,2B

)
.

2.2. Variable projection. In this section, we will review some details of the classical
variable projection algorithms [17, 24, 16, 15, 32] which are relevant to the optimized DMD
and our implementation of the method. We also include a brief coda concerning modern
advances in the variable projection framework.

2.2.1. Nonlinear least squares. The variable projection algorithm was originally con-
ceived for the solution of separable nonlinear least squares problems. The vector version of a
separable least squares problem is of the form

(2) minimize‖η −Φ(α)β‖2 over α ∈ Ck,β ∈ Cl ,

where η ∈ Cm, Φ(α) ∈ Cm×l, and m > l. A typical example of such a problem is the
approximation of a function η(t) by a linear combination of l nonlinear functions φj(α, t) with
coefficients βj . In this case, we set ηi = η(ti) and Φ(α)i,j = φj(α, ti) for m sample times ti.
Here, and in the remainder of the paper, the dependence of Φ(α) on the times ti is implicit.

The key to the variable projection algorithm is the following observation: for a fixed α,
the β which minimizes ‖η − Φ(α)β‖2 is given by β = Φ(α)†η. With this observation, we
can rewrite the minimization problem (2) in terms of α alone, solve for the minimizer α̂, and
recover the coefficients β corresponding to this minimizer via β̂ = Φ(α̂)†η. It is clear that
the minimization problem in α alone is equivalent to

(3) minimize
1

2
‖η −Φ(α)Φ(α)†η‖22 over α ∈ Ck ,

where we have squared the error and rescaled for notational convenience.
Typically [24, 16, 15, 32], the Levenberg-Marquardt algorithm [27, 28] is used for the

solution of the new minimization problem (3). This is an iterative procedure for solving (3),
which produces a sequence of vectors αi which should converge to a nearby (local) minimizer.
Let

(4) ρ(α) = η −Φ(α)Φ(α)†η
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denote the residual. We will use δi to denote the update to αi, so that αi+1 = αi − δi and
assume that a parameter νi is specified at each iteration. The Levenberg-Marquardt update
is defined to be the solution of

(5) minimize

∥∥∥∥( J(αi)
νiM(αi)

)
δi −

(
ρ(αi)

0

)∥∥∥∥2

2

over δi ∈ Ck ,

where J(αi) is the Jacobian of ρ(α) evaluated at αi and M(αi) is a diagonal matrix of
scalings such that M(αi)jj = ‖J(αi)(:, j)‖2. Typically the parameter νi is chosen as part of
a trust-region method, i.e. νi is increased until a step is found so that the new αi+1 results
in a smaller residual. When possible, the parameter νi is reduced so that the update is more
like a standard Gauss-Newton update, which results in a fast convergence rate. Ruhe and
Wedin [40] showed that when superlinear convergence occurs for Gauss-Newton applied to
the original problem (2), then it also occurs for the projected problem (3). See [28, 33] for
more detail on choosing νi and the overall structure of the Levenberg-Marquardt method.

In order to apply this method, we must have an expression for the Jacobian of ρ(α).
Typically, the derivatives of Φ with respect to α are known analytically, e.g. they are simple
to obtain in the case that φj(α, t) = exp(αjt). We therefore assume that these derivatives are
available. In the following, we will leave out the dependence of the matrices on α in order to
simplify the notation. Let PΦ denote the orthogonal projection onto the columns of Φ, i.e.
PΦ = ΦΦ†, and P⊥Φ denote the projection onto the complement of the column space of Φ, i.e.
P⊥Φ = I−ΦΦ†. Note that ρ = P⊥Φη. From Lemma 4.1 of [17], we have

(6) J(:, j) =
∂ρ

∂αj
= −

(
P⊥Φ

∂Φ

∂αj
Φ† +

(
P⊥Φ

∂Φ

∂αj
Φ†
)∗)

η .

Kaufman [24] recommends the approximation

(7) J(:, j) =
∂ρ

∂αj
≈ −P⊥Φ

∂Φ

∂αj
Φ†η ,

which is accurate for small residuals. This approximation is used in [16] and there is some
debate over whether this approximation to the Jacobian is superior to the full expression, see,
inter alia, [31, 32]. In our MATLAB implementation [4], we have used the full expression.

All of the terms in the above expression can be computed by making use of the singular
value decomposition (SVD) of Φ. Let q be the rank of Φ. The (reduced) SVD of a matrix Φ
provides three matrices U, Σ, and V such that Φ = UΣV∗, U ∈ Cm×q and V ∈ Cl×q have
orthonormal columns, and Σ ∈ Rq×q is diagonal with nonnegative entries. Given the SVD of
Φ, we have that

(8) P⊥Φ
∂Φ

∂αj
Φ†η = (I−UU∗)

∂Φ

∂αj
β ,
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where we have solved for β using β = VΣ−1U∗η, and

(9)

(
P⊥Φ

∂Φ

∂αj
Φ†
)∗
η = UΣ−1V∗

∂Φ

∂αj

∗
ρ ,

where we have used the fact that (P⊥Φ)∗η = P⊥Φη = ρ.

2.2.2. Variable projection for multiple right hand sides. One of the primary innovations
of [16] was the extension of the variable projection method developed above to the case of
multiple right hand sides, i.e. to the problem

(10) minimize‖H−Φ(α)B‖F over α ∈ Ck,B ∈ Cl×n ,

where H ∈ Cm×n, Φ(α) ∈ Cm×l, and m > l. A typical example of such a problem is the
approximation of n functions ηp(t), each by a linear combination of l nonlinear functions
φj(α, t) with coefficients Bj,p. In this case, we have Hi,p = ηp(ti) and Φ(α)i,j is as before,
Φ(α)i,j = φj(α, ti). We note that the vector of parameters α is the same for each function
ηp, so that the problem is coupled.

This problem can be solved efficiently using ideas similar to those outlined for the case of
a single right hand side above. In order to use the same language as for the vector case, we
need to reshape problem (10). Let η = H(:) and β = B(:). Then (10) is equivalent to

(11) minimize‖η − In ⊗Φ(α)β‖2 over α ∈ Ck,β ∈ Cln .

For a given α, the matrix B is given by Φ†H so that the computation of β can be done in
blocked form. Likewise, the computation of ρ can be blocked. Let P = H − ΦB. Then
ρ = P(:). Importantly, the formation of the Jacobian can also be blocked. If we set

(12) Jmat
j = −

(
P⊥Φ

∂Φ

∂αj
Φ† +

(
P⊥Φ

∂Φ

∂αj
Φ†
)∗)

H ,

then J(:, j) = Jmat
j (:). As above, if the SVD of Φ is computed, we may write

(13) P⊥Φ
∂Φ

∂αj
Φ†H = (I−UU∗)

∂Φ

∂αj
B ,

where we have solved for B using B = VΣ−1U∗H, and

(14)

(
P⊥Φ

∂Φ

∂αj
Φ†
)∗

H = UΣ−1V∗
∂Φ

∂αj

∗
P ,

where we have used the fact that (P⊥Φ)∗H = P⊥ΦH = P.
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Because this is the version of the variable projection algorithm used for the computations
in this paper, we will briefly discuss its computational cost. The matrices of partial derivatives
of Φ, i.e.

Dj =
∂Φ

∂αj
,

are often sparse in applications. As this is the case in our application, we will make the
simplifying assumption that these matrices have one nonzero column. In our implementation,
these matrices are stored in MATLAB sparse matrix format, though there are possibly more
efficient ways to leverage the sparsity, see [32] for an example. In what follows, we assume that
MATLAB handling of sparse matrix-matrix multiplication is optimal in the sense of operation
count. Another simplifying assumption we make is that l = k and that Φ is full rank, i.e.
q = k.

Each iteration of the algorithm is dominated by the cost of forming the Jacobian, J, and
solving for the update, δ. We have that J ∈ Cmn×k and M ∈ Ck×k so that the solve for δ
is O(k2mn) using standard linear least squares methods, e.g. a QR factorization. We will
consider the cost of computing J in four steps:

1. the cost of the SVD of Φ,
2. forming B and P,
3. applying formula (13),
4. and applying formula (14).

For step 1, the SVD of Φ costs O(k2m) to compute with standard methods. In step 2,
B and P are formed via matrix-matrix multiplications which are O(kmn). Note that steps 1
and 2 are computed once.

In step 3, the order of operations is more important. We rewrite (13) as

(15) P⊥Φ
∂Φ

∂αj
Φ†H = (Dj −U (U ∗Dj)) B ,

where the parentheses determine the order of the matrix multiplications. Forming U∗Dj

costs O(km) and is itself sparse with one nonzero column. The cost of forming U(U∗Dj) is
then again O(km) and is sparse with one nonzero column. Finally, Dj − U(U∗Dj) is still
sparse with one nonzero column so that the last multiplication giving (Dj−U(U∗Dj))B costs
O(mn). Repeating these calculations for each column is then O(k2m+ kmn) in total.

In step 4, the order of operations are again important. We rewrite (14) as

(16)

(
P⊥Φ

∂Φ

∂αj
Φ†
)∗

H = U(Σ−1(V∗(D∗jP))) .

Because D∗j has one nonzero row, forming D∗jP is O(mn) and the result has one nonzero row.
Similarly, it then costs O(kn) to form V∗(D∗jP) but the result is a full matrix of size k × n.
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The product Σ−1(V∗(D∗jP)) simply scales the rows, which costs O(kn). Finally, forming

U(Σ−1(V∗(D∗jP))) is a dense matrix-matrix multiplication which costs O(kmn). Repeating

these calculations for each column is then O(k2n+ k2mn) in total. This unfavorable scaling,
when compared with that of step 3, is part of the appeal of using the approximation (7).

In the discussion of the optimized DMD, we will take for granted the existence of an
algorithm for solving (10). See, for instance, the original Fortran implementation (follow the
URL in [16]). We have also prepared a MATLAB implementation for the computations in
this manuscript [4].

2.2.3. Inverse differential equations. In [16], it is observed that the inverse differential
equations problem can be phrased as a nonlinear least squares problem with multiple right
hand sides. Suppose that z(t) ∈ Cn is the solution of

(17) ż(t) = Az(t) ,

with the initial condition z(0) = z0. The solution of this problem is known analytically,

(18) z(t) = eAtz0 ,

where we have used the matrix exponential. The inverse linear differential equations problem
is to find A given z(ti) for m ≥ n sample times ti. Note that this problem is the natural
extension of the DMD to data with arbitrary sample times.

If we assume that A is diagonalizable, we can write

(19) z(t) = eAtz0 = eSΛtS−1
z0 = SeΛtS−1z0 ,

where A = SΛS−1 and Λ is diagonal. Let the diagonal values of Λ be given by α1, . . . , αk
and define nonlinear basis functions by φj(α, t) = exp(αjt). If we let Φ(α) and H be defined
as above, with ηp(ti) = zp(ti), then

(20) H = Φ(α)B ,

where

(21) Bi,j = Sj,i(S
−1z0)i

are the entries of B. Therefore, the inverse differential equations problem can be solved by
first solving

(22) minimize‖H−Φ(α)B‖F over α ∈ Cn,B ∈ Cn×n .

Note that k = l = n in this application. The matrix A can then be recovered by observing
that the ith column of Bᵀ is an eigenvector of A corresponding to the eigenvalue αi.
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Remark 1. We note that the variable projection framework also applies immediately to
the case that n > l, i.e. to the case of fitting an l dimensional linear system to data in a
higher dimensional space. The first algorithm presented in section 3 is the direct result of this
observation.

Remark 2. When α contains confluent (or nearly confluent) eigenvalues, the matrix Φ(α)
will not be full rank (or nearly not full rank). For the case that A truly has confluent (or nearly
confluent) eigenvalues, the algorithm will suffer near the solution. In particular, it is difficult
to try to approximate dynamics arising from a system with a non-diagonalizable matrix A
using exponentials alone. For the purposes of generalizing this method to a larger class of
ODE systems, the decomposition proposed as part of “Method 18” in [30] for computing
the matrix exponential of a matrix C offers an interesting alternative. In Method 18, C is
decomposed as C = SBS−1, where the matrix B is block-diagonal, with each block upper-
triangular. Intuitively, the blocks are selected so that nearly-confluent eigenvalues are grouped
together and the condition number of S is kept manageable. If we allow Λ to be block-
diagonal with upper-triangular blocks, then the algorithm for inverse linear systems above
could accommodate all matrices. In this case, we may have that k > l and the software will
be significantly more complicated. This is the subject of ongoing research and progress will
be reported at a later date.

2.2.4. Modern variable projection. The idea at the core of variable projection, reducing
the number of unknowns in a minimization problem by exploiting special structure, is not
limited in application to unconstrained nonlinear least squares problems. We will not attempt
a review of this broad subject here but will point to the applications of [32, 8, 2, 42] for a sense
of the types of problems which can be approached. Among the applications are exponential
data fitting with constraints, blind deconvolution, and multiple kernel learning. Because of
this flexibility, we believe that rephrasing the DMD as a problem in the variable projection
framework will provide opportunities for extensions of the DMD, including constrained and
robust versions.

In the recent paper [1], Aravkin et al. develop a variable projection method for an interest-
ing variation on the exponential fitting problem. Let Φ(α) ∈ Cm×k be made up of columns of
exponentials, i.e. φj(α, t) = exp(αjt), as in the previous section and consider a single stream
of data η ∈ Cm. The appropriate number, k, of different exponentials to use to approximate
the data may be difficult to ascertain a priori. Instead of choosing the correct number ahead
of time, one can choose a large k and augment the standard nonlinear least squares problem
with a sparsity prior, resulting in the problem

(23) minimize f(α,β) = ‖η −Φ(α)β‖22 + ‖β‖1 over α ∈ Ck,β ∈ Ck .

For a fixed α, the problem in β alone can be solved using any suitable least absolute shrinkage
and selection operator (LASSO) algorithm. In [1], the function

(24) f̃(α) = min
β
f(α,β)

8



is shown to be differentiable under suitable conditions and a formula for the gradient is derived.
This can then be used to solve for the minimizer of f̃ with a nonlinear optimization routine.

The DMD and optimized DMD face similar issues when it comes to determining the
appropriate rank r. Extending the above idea to the DMD setting is work in progress and
will be reported at a later date.

2.3. The DMD. In this section, we will provide some details of the DMD algorithm and
discuss its computation and properties, using the notation and definitions of [44].

2.3.1. Exact DMD. The exact DMD is defined for pairs of data {(x1,y1), . . . , (xm,ym)}
which we assume satisfy yj = Axj , for some matrix A. Typically, the pairs are assumed to
be given by equispaced snapshots of some dynamical system z(t), i.e. xj = z((j − 1)∆t) and
yj = z(j∆t), but they are not required to be of this form. For most data sets, the matrix A
is not determined fully by the snapshots. Therefore, we define the matrix A from the data in
a least- squares sense. In particular, we set

(25) A = YX† ,

where X† is the pseudo-inverse of X. The matrix A above is the minimizer of ‖AX −Y‖F
in the case that AX = Y is over-determined and the minimum norm (‖A‖F ) solution of
AX = Y in the case that the equation is under-determined [44] (‖ · ‖F denotes the standard
Frobenius norm). We may say that A is the best fit linear system mapping X to Y or, in
the typical application, the best fit linear map which advances z(t) to z(t+ ∆t) (this map is
sometimes referred to as a forward propagator).

The dynamic mode decomposition is then defined to be the set of eigenvectors and eigen-
values of A. Algorithm 1 provides a robust method for computing these values [44].

Remark 3. We note that, as a mathematical matter, the matrix Ã defined in (28) may
not have an eigendecomposition. In this case, the Jordan decomposition may be substituted
for the eigendecomposition and the modes which correspond to a single Jordan block would be
considered interacting modes. The Jordan decomposition, however, presents severe numerical
difficulties [18] and its computation should be avoided. For a matrix without an eigende-
composition, standard eigenvalue decomposition algorithms will likely return a result but the
matrix of eigenvectors may be ill-conditioned. While there are some obvious alternative de-
compositions in this case, it is unclear which is the best alternative. The Schur decomposition
is stable and would provide an orthogonal set of modes but all such modes would interact
(this is in sharp contrast with what is typically considered a DMD mode). The block-diagonal
Schur decomposition described in remark 2 could again provide an interesting alternative
decomposition.

Remark 4. In our implementation of the exact DMD (for the computations in section 4),
we use a different normalization than that in the definition of the DMD modes (30). We set

(31) ϕ =
1

‖YVΣ−1w‖2
YVΣ−1w

so that the DMD modes have unit norm.
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Algorithm 1 Exact DMD [44]

1. Define matrices X and Y from the data:

(26) X = (x1, . . . ,xm) , Y = (y1, . . . ,ym) .

2. Take the (reduced) SVD of the matrix X, i.e. compute U, Σ, and V such that

(27) X = UΣV∗ ,

where U ∈ Cn×r, Σ ∈ Cr×r, and V ∈ Cm×r, with r the rank of X.
3. Let Ã be defined by

(28) Ã = U∗YVΣ−1 .

4. Compute the eigendecomposition of Ã, giving a set of r vectors, w, and eigenvalues,
λ, such that

(29) Ãw = λw .

5. For each pair (w, λ), we have a DMD eigenvalue, λ itself, and a DMD mode defined
by

(30) ϕ =
1

λ
YVΣ−1w .

2.3.2. Low rank structure and the DMD. When computing the DMD using algorithm 1,
the SVD of the data is typically truncated to avoid fitting dynamics to the lowest energy
modes, which may be corrupted by noise. The decision of where and how to truncate can
have a significant effect on the resulting DMD modes and eigenvalues and can vary depending
on the needs of a given application. We will focus here on so-called hard-thresholding, where
the largest r singular values are maintained and the rest are set to zero.

For certain applications in optimized control, the low energy modes of a system have been
found to be important for balanced input-output models [36, 39, 38, 22]. The data in these
settings typically comes from numerical simulations, which are generally less polluted with
noise than measured data. In this case, it may be reasonable to choose a large r for the hard
threshold.

For applications with significant measurement error (or other sources of error), the question
of how best to truncate is difficult to answer. Often, a heuristic choice is made, e.g. looking
for “elbows” in the singular value decomposition of the data or keeping singular values up to
a certain percentage of the nuclear norm (so that the sum of the r singular values which are
kept is at least a certain percentage of the sum of all singular values).

In the case that the measurement error is additive white noise, the recent work of Gavish
and Donoho, [14], suggests an algorithmic choice for the truncation. When the standard
deviation of the noise is known, there is an analytical formula for the optimal cut-off [14].
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More realistically, the noise level must be estimated and an alternative formula based on the
median singular value of the data is available [14]. This has the disadvantage that at least
half of the singular values must be computed, which may be expensive for large data sets.

Following up on the last point, when only a modest number of singular values and vectors
out of the total are required, randomized methods for computing the SVD can significantly
reduce the cost over computing the full SVD. Such methods are based on applying the data
matrix to a small set of random vectors (r + p random vectors with p ≈ 15 are used to
compute r singular values and singular vectors) and then computing a SVD of reduced size.
Randomized methods of this flavor are becoming increasingly important in data analysis and
dense linear algebra, see [20] for a review. For an application in the DMD setting, see [13].

2.3.3. System reconstruction in the DMD basis. Let zj = z(j∆t) be snapshots of a
system, X = (z0, z1, . . . , zm), and (ϕi, λi) be r DMD mode-eigenvalue pairs computed via
algorithm 1, with the ϕ normalized as in remark 4. In many applications, it is of interest to
reconstruct the system, i.e. to compute coefficients bi so that

(32) zj ≈
r∑
i=1

biϕiλ
j
i .

For example, it is then possible to extrapolate a guess as to the future state of the system
using the formula

(33) z(t) ≈
r∑
i=1

biϕie
log(λi)t/∆t .

The expression (32) suggests the following minimization problem for the coefficients

(34) minimize

∥∥∥∥∥∥∥X−
 | |
ϕ1 ϕ2 · · ·
| |

 diag(b)

1 λ1 · · · λm1
1 λ2 · · · λm2
...

...
. . .

...


∥∥∥∥∥∥∥
F

over b ∈ Cr .

The problem (34) may be solved with linear-algebraic methods, see [23] for details. For
efficiency, the coefficients may be computed based on the first snapshot alone [25], i.e. setting
b as the solution of

(35) minimize

∥∥∥∥∥∥z0 −

 | |
ϕ1 ϕ2 · · ·
| |

b

∥∥∥∥∥∥
2

over b ∈ Cr ,

which can be computed using standard linear least squares methods. In many settings, the
coefficients recovered in this manner will be of sufficient accuracy.

The sparsity-promoting DMD method of [23] minimizes an objective function similar to
that of problem (34), but augmented with a sparsity prior, i.e. the problem
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(36) minimize

∥∥∥∥∥∥∥X−
 | |
ϕ1 ϕ2 · · ·
| |

 diag(b)

1 λ1 · · · λm1
1 λ2 · · · λm2
...

...
. . .

...


∥∥∥∥∥∥∥
F

+ γ‖b‖1 over b ∈ Cr ,

where γ is a parameter chosen to control the number of nonzero terms in b. This results in a
parsimonious representation.

If the goal is the best reconstruction possible for the given time dynamics, then it seems
that the DMD modes as returned by the exact DMD may be ignored. A high-quality recon-
struction is given by

(37) z(t) ≈
r∑
i=1

ψie
log(λi)t/∆t ,

where the ψi solve

(38) minimize

∥∥∥∥∥∥∥X−
 | |
ψ1 ψ2 · · ·
| |


1 λ1 · · · λm1

1 λ2 · · · λm2
...

...
. . .

...


∥∥∥∥∥∥∥
F

over ψ1, . . . ,ψr ∈ Cn

and are computable with standard linear least squares methods. This does not result in a
parsimonious representation, as in [23], but the fit will be optimal.

Remark 5. Upon examining equation (33), it is clear that the dynamic mode decompo-
sition is purely a method of fitting exponentials to data. This is equivalent to recovering
the eigendecomposition of the underlying linear system in the case that that linear system is
diagonalizable. In the case that there are transient dynamics which are not captured by a
purely diagonal system, the extensions mentioned in remarks 2 and 3 provide an alternative.
Of course, exponentials with similar exponents can mimic terms of the form t exp(αt), but
there may be lots of cancellation in the intermediate calculations.

2.3.4. Bias of the DMD. The papers [21, 12] deal with the question of bias in the
computed DMD modes and eigenvalues when data is corrupted by sensor noise. In the case
of additive white noise in the measurements, there are formulas for the bias associated with
the exact DMD algorithm [12]. If m is the number of snapshots and n is the dimension of the
system, the bias will be the dominant component of the DMD error whenever

√
m > SNR

√
n,

where SNR is the signal-to-noise ratio. For the purpose of avoiding this pitfall, there are a
number of alternative, debiased algorithms. We’ll present two of them here: the fbDMD
(forward-backward DMD) and tlsDMD (total least-squares DMD).

Let X and Y be as in the exact DMD and let UXΣXV∗X = X and UY ΣY V∗Y = Y be
(reduced) SVDs of these matrices. The debiased algorithms will follow the steps of the exact
DMD and will only differ in the definition of Ã.

Intuitively, the fbDMD method can be thought of as a correction to the one-directional
preference of the exact DMD. We define two matrices

12



(39) Ãf = U∗XYVXΣ−1
X

and

(40) Ãb = U∗Y XVY Σ−1
Y

which represent forward and backward propagators for the data in the same manner as the
exact DMD. The matrix given by

(41) Ã =
(
ÃfÃ

−1
b

)1/2

is then a debiased estimate of the forward propagator [12].

Remark 6. Because of the nonuniqueness of the square root, some care must be taken in
the calculation of Ã. In particular, the eigenvalues of Ã are only determined up to a factor
of ±1 by the square root. Dawson et al. recommend choosing the square root which is closest
to Ãf in norm. Näıvely this is a O(2r) calculation, where r is the number of eigenvalues, and
it is unclear how to improve on this scaling. In practice, this problem can often be avoided.
Suppose that the samples are snapshots of a continuous system whose signal has bandwidth
λB and that the timestep satisfies ∆t < π/(2λB). The discrete eigenvalues to be recovered,
which are given by exp(λ∆t) for each continuous eigenvalue λ, should then have positive
real part, removing the non-uniqueness discussed above. In this case it is safe to compute
the square root with the sqrtm function in MATLAB, which returns the square root whose
eigenvalues all have non-negative real part. Note that the requirement that ∆t < π/(2λB) is
a mild restriction, as it is only twice the sampling rate suggested by the Shannon sampling
theorem. This timestep restriction is met by all of our synthetic examples in section 4.

Remark 7. We note that, as described above, the forward-backward DMD is somewhat
approximate in that Ãf and Ãb are representations of the underlying operator which are
projected onto different subspaces. Let A denote the underlying linear operator and Sf =

YVXΣ−1
X and Sb = XVY Σ−1

Y . Then Af = SfÃfS
†
f and Ab = SbÃbS

†
b are both approxi-

mations of A, but Ãf and Ãb are not necessarily good approximations of each other. We
recommend instead computing the full approximations to Af and Ab for the data projected
onto the first r POD modes. And using the approximation Afb = (AfA

−1
b )1/2 for the lin-

ear operator projected onto those modes. For the calculations in section 4, we used this
modification to the fbDMD.

The tlsDMD method attempts to correct for the fact that noise on X and noise on Y are
not treated in the same way by the exact DMD. First, we project X and Y onto r < m/2
POD modes, obtaining X̃ and Ỹ. We define

(42) Z =

(
X̃

Ỹ

)
13



and compute its (reduced) SVD, UZΣZV∗Z = Z. Let U11 = UZ(1 : r, 1 : r) and U21 =
UZ(r + 1 : 2r, 1 : r). Then the matrix given by

(43) Ã = U21U
−1
11

is a debiased estimate of the forward propagator [12]. This definition is distinct from but
similar in spirit to the definition of [21].

In section 4, we compare the behavior of these methods with the optimized DMD for data
with sensor noise.

2.3.5. DMD with unevenly spaced data. Consider data of the form X = (z0, z1, . . . , zm),
where zj = z(tj) are snapshots of a dynamical system at times tj , which are not necessarily
equispaced. In the DMD literature, such data arises primarily in two settings: dealing with
missing data and developing efficient sampling strategies [43, 19, 26]. We briefly review the
algorithmic approaches of this previous work here and compare these with the algorithms of
this paper.

Leroux et al. [26] considered data which was sampled evenly in time but with missing
snapshots. To handle such data, they propose a three step procedure: (1) project the data
onto POD modes, (2) filter the POD coefficients and approximate the POD coefficients of
the missing modes using an expectation maximization algorithm, (3) compute the DMD of
the filtered and reconstructed data using a regularized partial least squares regression. This
Bayesian framework is quite distinct from the other DMD methods discussed in this section.
For instance, a useful feature of this framework is that it handles process noise explicitly in
step 2, which may be more appropriate for some data. We note that one possible limitation
of the method is that it is not suitable for arbitrary time sampling.

Tu et al. address the problem of sub-Nyquist-rate sampled data. Let X be as above
where the times tj are spaced by integer multiples of some value ∆t, i.e. tj+1 − tj = sj∆t
for some integer sj > 0. Let smin = minj sj and smax = maxj sj . Suppose that the data has
maximum frequency fmax. If the sample times are sufficiently random (in some sense), then
one of the central results of compressed sensing [7, 10, 9] is that it is possible to accurately
reconstruct the signal using convex optimization methods, even if smin∆t is larger than the
spacing π/fmax suggested by the Shannon-Nyquist sampling theorem. In [43], such convex
methods are adopted to the DMD setting and successfully applied to undersampled data
sets. In contrast with the present work, this approach is generally limited to finding purely
oscillatory modes without growth or decay.

Guéniat et al. [19] consider data with arbitrary sample times, with the goal of sampling
large data sets efficiently. As in the present work and the work of Chen et al. [11], the DMD
is formulated as an exponential fitting problem in [19]; indeed, this formulation is equivalent
to the definition of the DMD presented in the next section. Further, the algorithms used to
compute the DMD in both [19] and [11] can fairly be called variable projection algorithms.
The primary distinction of the algorithm in the present work is then that the optimization
procedure is specialized to the task at hand; in particular, we leverage the formula (6) of
Golub and Pereyra [17] to employ the Levenberg-Marquardt algorithm efficiently. Both [19]
and [11], in contrast, use blackbox optimization software.
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For data with a large spatial dimension, i.e. zj ∈ Cn for n large, it is possible to compute
the DMD based on some low rank approximation of the data. In [19], this is accomplished
using subset selection, i.e. by subsampling in space. We consider a different approach based
on projecting onto POD modes in the next section.

3. The optimized DMD. In this section, we will combine ideas from variable projection
and the DMD literature to obtain a pair of debiased algorithms which can compute the DMD
for data with arbitrary sample times. We will then demonstrate some of the properties of this
algorithm in the following section.

3.1. Algorithm. Let X = (z0, . . . , zm) be a matrix of snapshots, with zj = z(tj) ∈ Cn for
a set of times tj . For a target rank r determined by the user, assume that the data is the
solution of a linear system of differential equations, restricted to a subspace of dimension r.
I.e., assume that

(44) z(t) ≈ SeΛtS†z0 ,

where S ∈ Cn×r and Λ ∈ Cr×r. As in subsection 2.2.3, we may rewrite (44) as

(45) Xᵀ ≈ Φ(α)B ,

where

(46) Bi,j = Sj,i

(
S†z0

)
i

and Φ(α) ∈ C(m+1)×r with entries defined by Φ(α)i,j = exp(αjti).
The preceding leads us to the following definition of the optimized DMD in terms of an

exponential fitting problem. Suppose that α̂ and B̂ solve

(47) minimize‖Xᵀ −Φ(α)B‖F over α ∈ Ck,B ∈ Cl×n .

The optimized DMD eigenvalues are then defined by λi = α̂i and the eigenmodes are defined
by

(48) ϕi =
1

‖B̂ᵀ(:, i)‖2
B̂ᵀ(:, i) ,

where B̂ᵀ(:, i) is the i-th column of B̂ᵀ. We summarize the above definition as algorithm 2;
note that this definition of the optimized DMD is morally equivalent to that presented in
[11, 19].

If we set bi = ‖B̂ᵀ(:, i)‖2, then
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(49) z̃j =
r∑
i=1

bie
λitjϕi

is an approximation to zj for each j = 0, . . . ,m. Therefore, if B̂ and α̂ are computed, the
question of system reconstruction in the optimized DMD basis is trivial.

Algorithm 2 Optimized DMD

1. Let the snapshot matrix X and an initial guess for α be given.
2. Solve the problem

(50) minimize‖Xᵀ −Φ(α)B‖F over α ∈ Ck,B ∈ Cl×n ,

using a variable projection algorithm.
3. Set λi = α̂i and

(51) ϕi =
1

‖B̂ᵀ(:, i)‖2
B̂ᵀ(:, i) ,

saving the values bi = ‖B̂ᵀ(:, i)‖2.

Remark 8. We note that, given a single initial guess for α, the Levenberg-Marquardt
algorithm will not necessarily converge to the global minimizer of (47). It is therefore techni-
cally incorrect to claim that algorithm 2 will always compute the optimized DMD of a given
set of snapshots. Indeed, it may be that the proper way to view algorithms 2 and 3 is as
post-processors for the initial guess for α, which improve on α by computing a nearby local
minimizer. In section 4, we see that this post-processing — even when it is unclear whether
we’ve computed the global minimizer — provides significant improvement over other DMD
methods.

The asymptotic cost of algorithm 2 can be estimated using the formulas from subsec-
tion 2.2.2. For each iteration of the variable projection algorithm, the cost is O(r2mn). For
large m and n, it is possible to compute the optimized DMD (or an approximation of the
optimized DMD) more efficiently. Suppose that instead of computing α̂ and B̂ which solve
(47), you computed ᾰ and B̆ which solve

(52) minimize‖Xᵀ
r −Φ(α)B‖F over α ∈ Ck,B ∈ Cl×n ,

where Xr is the optimal rank r approximation of X (in the Frobenius norm). Algorithm 3
computes the solution to this problem.

The cost of computing the rank r SVD in step 2 of algorithm 3 is O(mnmin(m,n)) using
a standard algorithm or O(r2(m+n)+ rmn) using a randomized algorithm [20] (the constant
is larger for the randomized algorithm, so determining the faster algorithm can be subtle).
After this is computed once, the cost for each step of the variable projection algorithm is
improved to O(r3m). This can lead to significant speed ups over the original.

16



Algorithm 3 Approximate optimized DMD

1. Let the snapshot matrix X and an initial guess for α be given.
2. Compute the truncated SVD of X of rank r, i.e. compute Ur ∈ Cn×r Σr ∈ Cr×r, and

Vr ∈ C(m+1)×r such that

(53) Xr = UrΣrV
∗
r .

3. Compute ὰ and B̀ which solve

(54) minimize‖V̄rΣr −Φ(α)B‖F over α ∈ Cr,B ∈ Cr×r ,

using a variable projection algorithm.
4. Set λi = ὰi and

(55) ϕi =
1

‖UrB̀ᵀ(:, i)‖2
UrB̀

ᵀ(:, i) ,

saving the values bi = ‖UrB̀
ᵀ(:, i)‖2.

The following proposition shows the relation between the minimization problem (52) and
algorithm 3.

Proposition 9. Let Ur, Σr, Vr, ὰ, and B̀ be as in algorithm 3. Then ᾰ = ὰ and B̆ = B̀Uᵀ
r

are solutions of (52).

Proof. Let U and V be orthogonal matrices such that their first r columns equal Ur and
Vr respectively. We note that

‖V̄rΣr −Φ(ὰ)B̀‖F = ‖V̄
[
Σr 0
0 0

]
−Φ(ὰ)

[
B̀ 0

]
‖F

= ‖V̄
[
Σr 0
0 0

]
Uᵀ −Φ(ὰ)B̀

[
Ir 0

]
Uᵀ‖F

= ‖Xᵀ
r −Φ(ᾰ)B̆‖F .(56)

By contradiction, assume that there exist α̇ and Ḃ such that

(57) ‖Xᵀ
r −Φ(α̇)Ḃ‖F < ‖Xᵀ

r −Φ(ᾰ)B̆‖F .

Then,
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‖V̄rΣr −Φ(ὰ)B̀‖F > ‖Xᵀ
r −Φ(α̇)Ḃ‖

= ‖V̄
[
Σr 0
0 0

]
Uᵀ −Φ(α̇)Ḃ‖F

= ‖V̄
[
Σr 0
0 0

]
−Φ(α̇)ḂŪ‖F

≥ ‖V̄
[
Σr 0
0 0

]
−Φ(α̇)

[
ḂŪr 0

]
‖F

= ‖V̄rΣr −Φ(α̇)ḂŪr‖F .(58)

By the definition of ὰ and B̀, we have that

(59) ‖V̄rΣr −Φ(α̇)ḂŪr‖F ≥ ‖V̄rΣr −Φ(ὰ)B̀‖F ,

a contradiction.

The solution of the minimization problem (52) is desirable in and of itself in many sit-
uations. In particular, consider the cases in which you replace the data X with Xr for the
purpose of denoising the data or restricting the data to some low-dimensional structure (see
subsection 2.3.2 for more). In the general case, the following proposition shows that the
eigenvalues and eigenmodes produced by algorithms 2 and 3 will often give reconstructions of
comparable quality.

Proposition 10. Suppose that the pair (ᾰ, B̆) is a solution of (52) and that (α̂, B̂) is a
solution of (47). Then

(60) ‖Xᵀ −Φ(ᾰ)B̆‖F ≤ 2‖Xᵀ −Xᵀ
r‖F + ‖Xᵀ −Φ(α̂)B̂‖F ≤ 3‖Xᵀ −Φ(α̂)B̂‖F .

Proof. Using the definitions of (ᾰ, B̆) and (α̂, B̂), we have

‖Xᵀ −Φ(ᾰ)B̆‖F ≤ ‖Xᵀ −Xᵀ
r‖F + ‖Xᵀ

r −Φ(ᾰ)B̆‖F
≤ ‖Xᵀ −Xᵀ

r‖F + ‖Xᵀ
r −Φ(α̂)B̂‖F

≤ 2‖Xᵀ −Xᵀ
r‖F + ‖Xᵀ −Φ(α̂)B̂‖F

≤ 3‖Xᵀ −Φ(α̂)B̂‖F ,(61)

as desired.

3.2. Initialization. For good performance, the Levenberg-Marquardt algorithm, which is
at the heart of the variable projection method used to solve problems (50) and (54), requires
a good initial guess for the parameters α. Let the data X = (z0, . . . , zm) be as in the previous
subsection, with zj = z(tj) ∈ Cn. We will assume here that the sample times tj are in
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increasing order, t0 < t1 < · · · < tm. We propose using a finite difference style approximation
to obtain an initial guess.

We assume arguendo that the zj are iterates of a finite difference scheme, with timesteps
tj , applied to the ODE system

(62) ż = Az .

If the zj were obtained using the trapezoidal rule, then we have

(63)
zj − zj−1

tj − tj−1
=

1

2
A(zj + zj−1) ,

for j = 1, . . . ,m. Let X1 = (z0, . . . , zm−1), X2 = (z1, . . . , zm), and T = diag(t1 − t0, t2 −
t1, . . . , tm − tm−1). Then A satisfies

(64) (X2 −X1)T−1 = A
X1 + X2

2
.

We can then use an exact DMD-like algorithm to approximate the eigenvalues of A (which
are then our initial guess for α). Algorithm 4 takes as input X = (z0, . . . , zm) and t0 < · · · <
tm and outputs approximate eigenvalues (λi) of A.

Algorithm 4 Initialization routine

1. Let X1, X2, and T be as above. Define matrices Y and Z from the data:

(65) Y =
X1 + X2

2
, Z = (X2 −X1)T−1 .

2. Take the (reduced) SVD of the matrix Y, i.e. compute U, Σ, and V such that

(66) Y = UΣV∗ ,

where U ∈ Cn×r, Σ ∈ Cr×r, and V ∈ Cm×r, with r the rank of Y.
3. Let Ã be defined by

(67) Ã = U∗ZVΣ−1 .

4. Compute the eigendecomposition of Ã, giving a set of r vectors, w, and eigenvalues,
λ, such that

(68) Ãw = λw .

5. Return the eigenvalues.

In the above discussion, we chose the trapezoidal rule but any number of finite differ-
ence schemes are applicable (in particular, the Adams-Bashforth/Adams-Moulton family of
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discretization schemes). We opted for the trapezoidal rule because it treats the data symmet-
rically and has favorable stability properties for oscillatory phenomena. It is certainly possible
that a different choice of finite difference scheme would be more appropriate, depending on
the desired accuracy and stability properties for the given application.

We also note that if a solution of (47) is required for a certain application, then the
solution to (52) can provide a good initial condition.

Finally, for equispaced tj , the eigenvalues returned by the exact DMD (or one of the debi-
ased methods of subsection 2.3.4) can serve as an initial guess, after taking the logarithm and
scaling appropriately. In this sense, the optimized DMD can be viewed as a post-processing
step for the original DMD algorithm.

4. Examples. In this section, we present some numerical results in order to discuss the
performance of the optimized DMD, as computed using the tools discussed above. All calcu-
lations were performed in MATLAB on a laptop with an Intel Core i7-6600U CPU and 16Gb
of memory. The code used to generate these figures is available online [3].

For these examples, we use two notions of system reconstruction to evaluate the quality
of the DMDs we compute. Suppose that X is our matrix of snapshots and A is the true
underlying system matrix. If we compute r DMD eigenvalues λi and modes ϕi, then an
approximation of A may be recovered via

(69) A ≈ (ϕ1 · · ·ϕr)diag(λ1, . . . , λr)(ϕ1 · · ·ϕr)† .

In the case that A is known, we can compare this reconstruction with A in the Frobenius
norm.

We can also consider the reconstruction of X given by our decomposition. As noted
in subsection 2.3.3, the quality of this reconstruction can depend on the definition used for
determining the coefficients. In order to put all methods on a level playing field, we will take
the reconstruction of the snapshots to be the projection of the data onto the time dynamics
given by the computed eigenvalues. Let Φ(α) be the matrix of exponentials as used in the
definition of the optimized DMD. Then we will define the reconstruction of the snapshots to
be
(
Φ(α)Φ(α)†Xᵀ

)ᵀ
. A measure of the reconstruction quality is then given by the relative

Frobenius norm of the residual, i.e.

(70)
‖Xᵀ −Φ(α)Φ(α)†Xᵀ‖F

‖Xᵀ‖F
.

4.1. Synthetic data. First, we revisit some of the synthetic data examples of [12] in order
to discuss the effect of noise on the optimized DMD.

4.1.1. Example 1: measurement noise, periodic system. Let z(t) be the solution of a
two dimensional linear system with the following dynamics

(71) z̈ =

(
1 −2
1 −1

)
z .
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We use the initial condition z(0) = (1, 0.1)ᵀ and take snapshots zj = z(j∆t) + σg with
∆t = 0.1, σ a prescribed noise level, and g a vector whose entries are drawn from a standard
normal distribution. The continuous time eigenvalues of this system are ±i (this is how
the optimized DMD computes eigenvalues) and the discrete time eigenvalues are exp(±∆ti).
These dynamics should display neither growth nor decay, but in the presence of noise, the
exact DMD eigenvalues have a negative real part because of inherent bias in the definition
[12].

We consider the effect of both the size of the noise, σ, and the number of snapshots, m,
on the quality of the modes and eigenvalues obtained from various methods. We set the noise
level to the values σ2 = 10−1, 10−3, . . . , 10−9 and run tests with m = 26, 27, . . . , 213 snapshots.
For each noise level and number of snapshots, we compute the eigenvalues and modes of this
system using the exact DMD, fbDMD, tlsDMD, and optimized DMD over 1000 trials (different
draws of the vector g).

64 512 4096

10 -2

10 -1

64 512 4096

10 -3

64 512 4096

10 -4

64 512 4096

10 -5

64 512 4096

10 -6
Exact DMD

fbDMD

tlsDMD

optimized DMD

Figure 1. Example 1. This figure shows the mean Frobenius norm error (averaged over 1000 runs) in the
reconstructed system matrix A as a function of the number of snapshots m for various noise levels σ2.

In Figure 1, we plot the mean Frobenius norm error in the reconstructed system matrix
(averaged over the trials) as a function of the number of snapshots for various noise levels.
We see that, as in [12], the error in the exact DMD eventually levels off at the higher noise
levels because of the bias in its eigenvalues. The other methods perform well, with the error
decaying as the number of snapshots increases. The optimized DMD is shown to have an
advantage over the fbDMD and tlsDMD in this measure primarily at the highest noise levels
and with the fewest snapshots.

Figure 2 contains plots of the l2 norm error in the computed eigenvalues (averaged over the
trials) as a function of the number of snapshots for various noise levels. Again, the error in the
exact DMD eventually levels off at the lower noise levels because of the bias in its eigenvalues.
The other methods perform well, with the error decaying as the number of snapshots increases.
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Figure 2. Example 1. This figure shows the mean l2 error (averaged over 1000 runs) in the recovered
eigenvalues of the system matrix A as a function of the number of snapshots m for various noise levels σ2.

However, in this measure, the advantage of the optimized DMD is more pronounced. The error
in the eigenvalues for the optimized DMD is lower than for the fbDMD and tlsDMD across
all noise levels and is observed to decrease faster as the number of snapshots is increased.
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Figure 3. Example 1. This figure shows 95 percent confidence ellipses for the eigenvalue i (based on 1000
runs) for the second-highest noise level σ2 = 10−3 and fewest snapshots m = 64.
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We plot 95 percent confidence ellipses (in the complex plane) for the eigenvalue i for the
second-highest noise level and fewest number of snapshots in Figure 3. The bias in the exact
DMD is evident, as the center of the ellipse is seen to be shifted into the left half-plane. The
fbDMD and tlsDMD are seen to correct for this bias, but the spread of the optimized DMD
eigenvalues is notably smaller.

Figure 4. Example 1. This figure shows the mean Frobenius norm error (averaged over 1000 runs) of the
reconstructed snapshots as a function of the number of snapshots m for various noise levels σ2.

In Figure 4, we plot the mean error in the optimal reconstruction of the snapshots using
the computed eigenvalues, see (70) for the definition of this error. The optimized DMD
demonstrates an advantage across noise levels and number of snapshots used, though it is
more pronounced at higher noise levels. Further, the error in the optimized DMD is seen
to be relatively flat as the number of snapshots increases, which is to be expected. The
reconstruction error increases for the other methods as the number of snapshots increases,
particularly at the higher noise levels.

4.1.2. Example 2: measurement noise, hidden dynamics. In the case that a signal
contains some rapidly decaying components it can be more difficult to identify the dynam-
ics, particularly in the presence of sensor noise [12]. We consider a signal composed of two
sinusoidal signals which are translating, with one growing and one decaying, i.e.

(72) z(x, t) = sin(k1x− ω1t)e
γ1t + sin(k2x− ω2t)e

γ2t ,

where k1 = 1, ω1 = 1, γ1 = 1, k2 = 0.4, ω2 = 3.7, and γ2 = −0.2 (these are the settings used
in [12]). This signal has four continuous time eigenvalues given by γ1 ± iω1 and γ2 ± iω2. We
set the domain of x to be [0, 15] and use 300 equispaced points to discretize. For the time
domain, we set ∆t = 2π/(29 − 1) so that the largest number of snapshots we use, m = 29,
covers [0, 2π].
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As before, we consider the effect of both the size of the noise, σ, and the number of
snapshots, m, on the quality of the modes and eigenvalues obtained from various methods.
We set the noise level to the values σ2 = 2−2, 2−4, . . . , 2−10 and run tests with m = 64j for
j = 2, 3, . . . , 8 snapshots (the range of the number of snapshots is more limited for this problem
by the exponential growth in the signal). For each noise level and number of snapshots, we
compute the eigenvalues and modes of this system using the exact DMD, fbDMD, tlsDMD,
and optimized DMD over 1000 trials (different draws of the vector g). We compute the DMD
for each of these methods with the data projected on the first 4 POD modes (the first 4 left
singular vectors of the data matrix). For the optimized DMD, this means we are using the
approximate algorithm, algorithm 3.

Figure 5. Example 2. This figure shows the mean l2 error (averaged over 1000 runs) in the recovered
dominant (growing) eigenvalues of the system as a function of the number of snapshots m for various noise
levels σ2.

In Figures 5 and 6, we plot the mean l2 error (averaged over the trials) in the recovered
dominant eigenvalues (1± i) and the recovered hidden eigenvalues (−0.2± 3.7i), respectively.
For the dominant eigenvalues, the exact DMD, fbDMD, and tlsDMD perform similarly and
the optimized DMD has lower error, up to an order of magnitude more accurate for some
settings. For the hidden eigenvalues, the bias in the exact DMD is evident and it performs
notably worse. It seems that the same phenomenon occurs in which the bias of the exact DMD
causes these curves to level off prematurely. Of course, the signal for the hidden eigenvalues
will eventually decay so much that there is no advantage in adding more snapshots. This is
evident in these plots as the curves flatten out for all methods. Again, the optimized DMD
has an advantage across noise levels and number of snapshots. Importantly, it appears that
for some noise levels, the other methods won’t perform as well as the optimized DMD, even
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Figure 6. Example 2. This figure shows the mean l2 error (averaged over 1000 runs) in the recovered
hidden (shrinking) eigenvalues of the system as a function of the number of snapshots m for various noise
levels σ2.

if you provide them with more snapshots.
We plot 95 percent confidence ellipses (in the complex plane) for the eigenvalues 1 + i and

−0.2 + 3.7i in Figures 7 and 8, respectively, for the highest noise level and fewest number of
snapshots. The bias in the exact DMD is evident, as the center of the ellipse is seen to be
shifted to the left for both eigenvalues. The fbDMD, tlsDMD, and optimized DMD all correct
for the bias but the spread of the optimized DMD is notably smaller.

In Figure 9, we plot the mean error in the optimal reconstruction of the snapshots using the
computed eigenvalues, see (70) for the definition of this error. In contrast with the periodic
example, the error curves roughly coincide for all methods and the error decreases as the
number of snapshots increases. This is likely a result of the fact that the growing modes
dominate more and more as the system advances in time (when new snapshots are added,
they come from later in the time series). It is interesting that the reconstruction error is only
marginally better for the optimized DMD — this error is what the optimized DMD tries to
minimize — but the recovered eigenvalues are significantly better.

Because the data in this example is in a high dimensional space relative to the rank of
the dynamics, we must use some sort of truncation when computing the DMD (using any of
the methods). For the comparisons above, we used the a priori knowledge we have of the
system to always truncate at rank 4. When this a priori information is unavailable, it is
sometimes necessary to determine an appropriate truncation from the data. In Figure 10,
we compare the hard-threshold (the number of singular values to keep) obtained from the
Gavish-Donoho formula [14] with the hard-threshold obtained by keeping 99.9, 99, and 90
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Figure 7. Example 2. This figure shows 95 percent confidence ellipses for one of the dominant eigenvalues
(based on 1000 runs) for the highest noise level σ2 = 2−2 and fewest snapshots m = 128.

percent of the energy in the singular values. The Gavish-Donoho formula always produced
4 in our experiments, while the cut-offs based on keeping a certain percentage of the energy
produced wildly different results depending on noise level and number of snapshots. The type
of error in this example exactly satisfies the assumptions used to obtain the Gavish-Donoho
formula; nonetheless, the performance of the formula is impressive in comparison with these
other a posteriori methods.

In Figure 11, we plot the mean run-time of each method as you increase the number
of snapshots, with the values normalized by the mean run-time of the exact DMD. We see
that the optimized DMD indeed requires more computation than the other methods but that
the increase is modest. For this example, the run-time is dominated by the SVD used for
the truncation in each method. These values should be taken with a grain of salt, as they
depend significantly on the quality of the implementation (and, for the optimized DMD, on
the parameters sent to the optimization routine). Note that our implementation of the fbDMD
checks every possible square root for the optimal answer, which is costly for larger systems.

4.1.3. Example 3: uncertain sample times, periodic system. For this example, we revisit
the system of Example 1, (71), but introduce a different type of sampling error: uncertain
sample times. Let z(t) be the solution of (71) with the initial condition z(0) = (1, 0.1)ᵀ. Let
the snapshots be given by zj = z((j + σgj)∆t) with ∆t = 0.1, σ a prescribed noise level,
and g a vector whose entries are drawn from a standard normal distribution. Again, the
continuous time eigenvalues of this system are ±i (this is how the optimized DMD computes
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Figure 8. Example 2. This figure shows 95 percent confidence ellipses for one of the hidden eigenvalues
(based on 1000 runs) for the highest noise level σ2 = 2−2 and fewest snapshots m = 128.

eigenvalues) and the discrete time eigenvalues are exp(±∆ti). Intuitively, the methods should
behave as they did for the sensor noise example (consider the Taylor series of z((j + σgj)∆t)
about z(j∆t)) but there is a different structure to the noise here.

We consider the effect of both the size of the noise, σ, and the number of snapshots, m,
on the quality of the modes and eigenvalues obtained from various methods. We set the noise
level to the values σ2 = 2−2, 2−4, . . . , 2−10 and run tests with m = 26, 27, . . . , 213 snapshots.
For each noise level and number of snapshots, we compute the eigenvalues and modes of this
system using the exact DMD, fbDMD, tlsDMD, and optimized DMD over 1000 trials (different
draws of the vector g).

In Figure 12, we plot the mean Frobenius norm error in the reconstructed system matrix
(averaged over the trials) as a function of the number of snapshots for various noise levels. We
see that, as in Example 1, the error in the exact DMD eventually levels off at the higher noise
levels because of the bias in its eigenvalues. Surprisingly, this occurs for the tlsDMD as well,
but at a lower error. The fbDMD and optimized DMD perform well, with the error decaying
as the number of snapshots increases. The optimized DMD shows slight improvement over
the fbDMD at the highest noise levels and with the fewest snapshots.

Figure 13 contains plots of the l2 norm error in the computed eigenvalues (averaged over
the trials) as a function of the number of snapshots for various noise levels. Again, the
error in the exact DMD eventually levels off at the lower noise levels because of the bias in
its eigenvalues. We see similar behavior for the tlsDMD. The fbDMD and optimized DMD
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Figure 9. Example 2. This figure shows the mean Frobenius norm error (averaged over 1000 runs) of the
reconstructed snapshots as a function of the number of snapshots m for various noise levels σ2.

Figure 10. Example 2. This figure shows the mean estimated rank of the data (averaged over 1000 runs)
using the Gavish-Donoho, 99.9 percent, 99 percent, and 90 percent hard-thresholds as a function of the number
of snapshots m for various noise levels σ2.
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Figure 11. Example 2. This figure shows the mean run-time of the methods (averaged over 1000 runs)
relative to the mean run-time for the exact DMD as a function of the number of snapshots m.
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Figure 12. Example 3. This figure shows the mean Frobenius norm error (averaged over 1000 runs) in the
reconstructed system matrix A as a function of the number of snapshots m for various noise levels σ2.

perform well, with the error decaying as the number of snapshots increases. However, in
this measure, the advantage of the optimized DMD is more pronounced. The error in the
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Figure 13. Example 3. This figure shows the mean l2 error (averaged over 1000 runs) in the recovered
eigenvalues of the system matrix A as a function of the number of snapshots m for various noise levels σ2.

eigenvalues for the optimized DMD is lower than for the fbDMD and tlsDMD across all noise
levels and is observed to decrease faster as the number of snapshots is increased.

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02

0.98

0.99

1

1.01

1.02

1.03

Exact DMD

fbDMD

tlsDMD

optimized DMD

Exact DMD mean

fbDMD mean

tlsDMD mean

optimized DMD mean

Answer

Figure 14. Example 3. This figure shows 95 percent confidence ellipses for the eigenvalue i (based on 1000
runs) for the highest noise level σ2 = 2−2 and fewest snapshots m = 64.
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We plot 95 percent confidence ellipses (in the complex plane) for the eigenvalue i for the
highest noise level and fewest number of snapshots in Figure 14. Again, the bias in the exact
DMD is indicated by the fact that the ellipse is shifted into the left half-plane. Curiously,
the tlsDMD displays a different type of bias, consistently overestimating the frequency of the
oscillation. The fbDMD and optimized DMD are relatively bias-free, with the fbDMD having
a smaller spread along the real axis and the optimized DMD having a smaller spread along
the imaginary axis. We believe that the strong performance of the fbDMD here is rather
intuitive: by averaging the forward and backward dynamics, the fbDMD should nearly cancel
the noise we’ve introduced with the uncertain sample times.

64 512 4096

10 -1

64 512 4096

10 -1

64 512 4096

10 -1

64 512 4096

10 -2

64 512 4096

0.005

0.01

0.015

0.02

Exact DMD

fbDMD

tlsDMD

optimized DMD

Figure 15. Example 3. This figure shows the mean Frobenius norm error (averaged over 1000 runs) of the
reconstructed snapshots as a function of the number of snapshots m for various noise levels σ2.

In Figure 15, we plot the mean error in the optimal reconstruction of the snapshots using
the computed eigenvalues, see (70) for the definition of this error. The fbDMD and optimized
DMD perform the best across noise levels and number of snapshots used, though the advantage
is more pronounced at higher noise levels. The reconstruction error increases for the exact
DMD and tlsDMD as the number of snapshots increases, particularly at the higher noise
levels.

From the above, we see that uncertain sample times can produce errors in the computed
DMD modes and eigenvalues which are qualitatively different from the errors produced by
sensor noise. We believe that this source of error may be of interest when analyzing data
collected by humans or historical data sets. When dealing with real data, it is clear how to
perform sensitivity analysis for additive sensor noise: simply rerun the method for the data
with sensor noise added. It is unclear how to perform sensitivity analysis for uncertain sample
times using the exact DMD, fbDMD, or tlsDMD. Using the optimized DMD, such an analysis
is again simple: rerun the method for the same data set while adding noise to the sample
times that you send to the optimized DMD routine.
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4.2. Example 4: Sea surface temperature data. For the final example, we consider a
real data set: the “optimally-interpolated” sea surface temperature (OISST-v2, AVHRR only)
data set from the National Oceanic and Atmospheric Administration (NOAA) [35, 6]. This
is a data set of daily average ocean temperatures, with 1/4 degree resolution in latitude and
longitude, for a total of about 700k grid points over the ocean. The temperatures are reported
to four decimal digits. We considered two subsets of this data: 521 snapshots (10 years) spaced
7 days apart and 521 snapshots spaced randomly, with an average of 7 days apart, with each
set starting on January 1st, 1982.
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Figure 16. Example 4. We plot the relative residual of the best possible reconstruction using the eigenvalues
obtained from the exact DMD, tlsDMD, and optimized DMD for several values of the reconstruction rank r. We
also include the relative norm of the residual when projecting the data onto r POD modes, which respresents a
rough lower bound on the relative residual for DMD modes.

When it comes to properly truncating this data set for the DMD, there are a number of
complicating factors: the sensor noise is not simply additive white noise, the values have been
interpolated, and the underlying dynamics are not linear. In particular, the assumptions used
to obtain the Gavish-Donoho formula are not satisfied. In Figure 16, we see that the error in
the optimal reconstruction, using the eigenvalues for any of the methods, decreases weakly as
you increase the rank of the system. This is largely driven by the slow decay in the singular
values of the data matrix (compare the reconstruction quality for the optimized DMD with
that obtained for POD modes). For the largest rank, r = 128, the reconstruction error for the
tlsDMD is not included because it had actually increased by more than an order of magnitude
over the error for r = 64. We will see that this is due to some spurious eigenvalues in the
tlsDMD which correspond to an unreasonable amount of growth.

In Figure 17, we produce scatter plots of the DMD eigenvalues obtained from the exact
DMD, tlsDMD, and optimized DMD for various choices of the DMD rank r. Setting r = 128
(this is close to the value r = 124 obtained from the Gavish-Donoho formula), the exact DMD

32



-0.15 -0.1 -0.05 0
-0.4

-0.2

0

0.2

0.4

-0.15 -0.1 -0.05 0
-0.1

-0.05

0

0.05

0.1

-0.15 -0.1 -0.05 0
-0.04

-0.02

0

0.02

0.04

Exact DMD

tlsDMD

optimized DMD

Figure 17. Example 4. We plot the eigenvalues obtained using the exact DMD, tlsDMD, and optimized
DMD for various target ranks r.

has a number of strongly decaying modes and there are some growing modes visible for the
tlsDMD. There is not much agreement among the methods at this level. For r = 32, the
exact DMD and tlsDMD give more reasonable values and there is more agreement among the
methods but still some significant discrepancy in the eigenvalues. For r = 8, we see that all of
the methods obtain similar eigenvalues. From the preceding, it is unclear how to choose the
correct rank r without a priori knowledge.

Because this data set comes from temperature measurements over time, we know some of
the wavelengths we should find in the data set. In particular, there should be a background
mode with infinite wavelength and a mode corresponding to a tropical year (365.24 days). In
Table 1, we see that these wavelengths are discovered by each DMD method. The tropical
year wavelength recovered by the optimized DMD method (365.30 days) is remarkably close
to the true value, particularly considering that the data is only provided to four decimal digits.
We see that the second harmonic of this frequency, or a wavelength of half a tropical year,
is also discovered by the DMD methods. The half-year wavelength from the optimized DMD
(182.61 days) is again quite accurate (actual value 182.62 days).

One way to verify the eigenvalues obtained from the optimized DMD on the evenly spaced
data set is to compare these with the eigenvalues from the randomly spaced data set. For
r = 16, we computed DMD eigenvalues and modes using the optimized DMD on each data
set. The wavelengths corresponding to these eigenvalues are reported in Table 2. There is
good agreement for the infinite, one year, and half-year wavelengths, and less-so for the others.
Further, the spatial modes for these wavelengths are very similar. We measure this using the
cosine of the angle between the corresponding spatial modes, which is near 1 in absolute value
for the infinite, one year, and half-year wavelengths. Heatmaps of these modes are provided
in Figure 18. We find this to be a convincing confirmation of these wavelengths, which did
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Coefficient optimized DMD tlsDMD exact DMD

+1.5302e+04 +2.8122e+18 +Inf +Inf

+9.8238e+02 -1.3565e+17 +Inf +Inf

+9.7476e+02 -3.6530e+02 -3.6695e+02 -3.6767e+02

+9.7476e+02 +3.6530e+02 +3.6695e+02 +3.6767e+02

+2.3189e+02 -6.5046e+02 -5.0713e+02 -5.3827e+02

+2.3189e+02 +6.5046e+02 +5.0713e+02 +5.3827e+02

+2.1204e+02 -1.8261e+02 -1.8957e+02 -1.9056e+02

+2.1204e+02 +1.8261e+02 +1.8957e+02 +1.9056e+02

+1.3309e+02 -7.9859e+02 -8.1385e+02 -8.5878e+02

+1.3309e+02 +7.9859e+02 +8.1385e+02 +8.5878e+02

+1.1419e+02 -2.9084e+03 -4.2224e+03 -6.6036e+03

+1.1419e+02 +2.9084e+03 +4.2224e+03 +6.6036e+03

+6.6960e+01 +1.6955e+03 +1.9867e+03 +1.9270e+03

+6.6960e+01 -1.6955e+03 -1.9867e+03 -1.9270e+03

+4.8591e+01 -1.0973e+03 -1.5181e+03 -1.7531e+03

+4.8591e+01 +1.0973e+03 +1.5181e+03 +1.7531e+03

Table 1
Example 4. This table shows the wavelength (in days) for each eigenvalue computed using the exact DMD,

tlsDMD, and optimized DMD, for the evenly spaced data with r = 16. The optimized DMD wavelengths are
ordered according to the magnitude of the corresponding spatial mode and the other wavelengths are chosen in
the order which best matches the optimized DMD values.

not require a priori knowledge.
Some basic timing info for these calculations is provided in Figure 19. The time reported

is the total time used by the algorithm, excluding the cost of the SVD used to project the
data onto POD modes (the time for this calculation was 32 seconds). For ranks less than or
equal to r = 32, the optimized DMD costs only about 4 times as much as the other methods.
For the largest rank, r = 128, the optimized DMD is about a factor of 10 times more costly.
Even then, the cost of the optimized DMD is roughly equal to the cost of the initial SVD.
For larger r, the computational cost of the optimized DMD appears to increase no faster than
O(r2), which is lower than the bound we expect based on the estimates in section 3.

5. Conclusions and future directions. Based on the numerical experiments above, we
believe that the optimized DMD is the DMD algorithm of choice for many applications. The
resulting modes and eigenvalues are less sensitive to noise than those computed using the
other DMD methods we tested and the optimized DMD overcomes the bias issues of the
exact DMD. In some cases, the improvement over existing methods in robustness to noise
is significant. For example 2, the optimized DMD algorithm is better able to capture the
hidden dynamics than the other DMD methods, sometimes showing an order of magnitude
improvement in the error. For the sea surface temperature data, example 4, the optimized
DMD obtains modes which more accurately describe yearly patterns; indeed, the accuracy of
the yearly and half-yearly wavelengths obtained by the optimized DMD is comparable with
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even — b uneven — b even — λ uneven — λ projection

+1.5302e+04 +1.4465e+04 +2.8122e+18 -1.9361e+20 +9.9964e-01

+9.8238e+02 +5.4390e+02 -1.3565e+17 +4.3709e+17 +4.4502e-02

+9.7476e+02 +9.7456e+02 -3.6530e+02 -3.6526e+02 +9.9981e-01

+9.7476e+02 +9.7456e+02 +3.6530e+02 +3.6526e+02 +9.9981e-01

+2.3189e+02 +2.8990e+02 -6.5046e+02 -6.0671e+02 +8.6006e-01

+2.3189e+02 +2.8990e+02 +6.5046e+02 +6.0671e+02 +8.6006e-01

+2.1204e+02 +2.1168e+02 -1.8261e+02 -1.8259e+02 +9.9591e-01

+2.1204e+02 +2.1168e+02 +1.8261e+02 +1.8259e+02 +9.9591e-01

+1.3309e+02 +8.6639e+01 -7.9859e+02 -8.6279e+02 +8.7601e-01

+1.3309e+02 +8.6639e+01 +7.9859e+02 +8.6279e+02 +8.7601e-01

+1.1419e+02 +9.6051e+01 -2.9084e+03 -2.2726e+03 +7.6004e-01

+1.1419e+02 +9.6051e+01 +2.9084e+03 +2.2726e+03 +7.6004e-01

+6.6960e+01 +7.7304e+01 +1.6955e+03 +1.4850e+03 +8.0135e-01

+6.6960e+01 +7.7304e+01 -1.6955e+03 -1.4850e+03 +8.0135e-01

+4.8591e+01 +1.0787e+02 -1.0973e+03 -1.2015e+03 +7.5979e-01

+4.8591e+01 +1.0787e+02 +1.0973e+03 +1.2015e+03 +7.5979e-01

Table 2
Example 4. This table compares the wavelengths λ obtained using the optimized DMD for each of the evenly

spaced and randomly spaced data sets, with r = 16. The wavelengths obtained from the evenly spaced data are
ordered according to the magnitude of the corresponding spatial mode (the b values) and the wavelengths for the
randomly spaced data are chosen in the order which best matches the evenly spaced DMD values. In the last
column, we report the cosine of the angle between the spatial mode from the evenly spaced data and the spatial
mode from the randomly spaced data.

the accuracy of the data (the exact DMD and tlsDMD are an order of magnitude less accurate
for these wavelengths).

Of course, these advantages come at a cost: computing the optimized DMD requires
the solution of a nonlinear, nonconvex optimization problem. As noted above, it is unclear
whether we have actually solved this optimization problem (globally) in our numerical ex-
periments. The solutions we have obtained nonetheless represent improvements over existing
DMD methods and the cost of the optimization algorithm is modest for the range of problem
sizes considered above. We see in Figure 11 that, for this problem size, the cost of the opti-
mized DMD is only about 1.5 times that of the exact DMD in the worst case (as the number of
snapshots increases, the cost of the projection onto POD modes begins to dominate the calcu-
lation, so the times for each method become closer to equal). For the larger climate example,
the run time of the optimized DMD was about 6 times that of the exact DMD (for various
values of the reconstruction rank r), see Figure 19. This is a more significant cost increase,
but even for the largest rank, r = 128, the cost of the optimized DMD was roughly equal to
that of the SVD required to project onto POD modes (this cost is left out of the values in
Figure 19). We should stress that these timings depend strongly on the implementation of the
given algorithms and even the parameters sent to the optimization routine. The MATLAB
implementation of algorithms 2 and 3 we prepared for these experiments is available online

35



Figure 18. Example 4. We plot the spatial modes obtained using the optimized DMD for two different
subsets of the data, one with evenly spaced snapshots (left two columns) and randomly spaced snapshots (right
two columns). The top row corresponds to a static background mode, the middle row the real and imaginary
parts of a mode with a one-year wavelength, and the bottom row the real and imaginary parts of a mode with a
half-year wavelength.

[3, 4].
The apparent efficiency of the optimized DMD algorithms is a result of the variable pro-

jection methods which have been developed for nonlinear least squares problems. Further, by
rephrasing the problem as fitting exponentials to data, the optimized DMD also represents
a more general method. It is no longer necessary to assume that the snapshots are evenly
spaced in time.

There are a few different avenues available for future research. As mentioned above, the
variable projection framework applies to a wide range of optimization problems and could
therefore serve as the basis for an optimized DMD with the addition of a sparsity prior (see
subsection 2.2.4). Such a method could help side-step the problem of choosing the correct tar-
get rank a priori. Also mentioned above is the possibility of using a block Schur decomposition,
as opposed to an eigendecomposition, in the definition of the DMD. This could potentially
improve the ability of the DMD to stably approximate transient dynamics. Finally, a few new
directions are available because the sample times need not be evenly spaced for the optimized
DMD. As seen in miniature for the climate example, making use of arbitrary sample times
allows for some interesting types of cross-validation (and indeed expands the number of pos-
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Figure 19. Example 4. The run time (excluding the SVD of the data used for projecting onto POD modes)
for each method and various values of the rank r on the evenly spaced data set. We also plot scaled versions of
r2 and r3 for reference.

sible cross-validation sets for a given set of snapshots). There is also the possibility of using
incoherent time sampling (e.g. randomly spaced times) to detect high frequency signals using
less data than implied by the Shannon sampling theorem.
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