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ABSTRACT Regularized regression problems are ubiquitous in statistical modeling, signal processing,
and machine learning. Sparse regression in particular has been instrumental in scientific model discovery,
including compressed sensing applications, variable selection, and high-dimensional analysis. We propose a
broad framework for sparse relaxed regularized regression, called SR3. The key idea is to solve a relaxation
of the regularized problem, which has three advantages over the state-of-the-art: (1) solutions of the relaxed
problem are superior with respect to errors, false positives, and conditioning, (2) relaxation allows extremely
fast algorithms for both convex and nonconvex formulations, and (3) the methods apply to composite
regularizers, essential for total variation (TV) as well as sparsity-promoting formulations using tight frames.
We demonstrate the advantages of SR3 (computational efficiency, higher accuracy, faster convergence
rates, greater flexibility) across a range of regularized regression problems with synthetic and real data,
including applications in compressed sensing, LASSO, matrix completion, TV regularization, and group
sparsity. Following standards of reproducible research, we also provide a companion Matlab package that
implements these examples.

INDEX TERMS Nonconvex optimization, sparse regression, compressed sensing, LASSO, total variation
regularization, matrix completion

I. INTRODUCTION

REGRESSION is a cornerstone of data science. In the
age of big data, optimization algorithms are largely

focused on regression problems in machine learning and AI.
As data volumes increase, algorithms must be fast, scalable,
and robust to low-fidelity measurements (missing data, noise,
and outliers). Regularization, which includes priors and con-
straints, is essential for the recovery of interpretable solu-
tions in high-dimensional and ill-posed settings. Sparsity-
promoting regression is one such fundamental technique, that
enforces solution parsimony by balancing model error with
complexity. Despite tremendous methodological progress
over the last 80 years, many difficulties remain, including (i)
restrictive theoretical conditions for practical performance,
(ii) the lack of fast solvers for large scale and ill-conditioned
problems, (iii) practical difficulties with nonconvex imple-
mentations, and (iv) high-fidelity requirements on data. To

overcome these difficulties, we propose a broadly applicable
method, sparse relaxed regularized regression (SR3), based
on a relaxation reformulation of any regularized regression
problem. We demonstrate that SR3 is fast, scalable, robust
to noisy and missing data, and flexible enough to apply
broadly to regularized regression problems, ranging from
the ubiquitous LASSO and compressed sensing (CS), to
composite regularizers such as the total variation (TV) reg-
ularization, and even to nonconvex regularizers, including
`0 and rank. SR3 improves on the state-of-the-art in all of
these applications, both in terms of computational speed
and performance. Moreover, SR3 is flexible and simple to
implement. A companion open source package implements a
range of examples using SR3.

The origins of regression extend back more than two
centuries to the pioneering mathematical contributions of
Legendre [37] and Gauss [30], [31], who were interested
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in determining the orbits of celestial bodies. The invention
of the digital electronic computer in the mid 20th century
greatly increased interest in regression methods, as compu-
tations became faster and larger problems from a variety of
fields became tractable. It was recognized early on that many
regression problems are ill-posed in nature, either being
under-determined, with an infinite set of candidate solutions,
or otherwise sensitive to perturbations in the observations,
often due to some redundancy in the set of possible models.
Andrey Tikhonov [50] was the first to systematically study
the use of regularizers to achieve stable and unique numerical
solutions of such ill-posed problems. The regularized linear
least squares problem is given by

min
x

1

2
‖Ax− b‖2 + λR(Cx) , (1)

where x ∈ Rd is the unknown signal, A ∈ Rm×d is the
linear data-generating model for the observations b ∈ Rm,
C ∈ Rn×d is a linear map, R(·) is any regularizer, and λ
parametrizes the strength of the regularization. Tikhonov pro-
posed a simple `2 penalty, i.e. R(x) = ‖x‖2 =

∑
x2i , which

eventually led to the formal introduction of the ridge regres-
sion strategy by Hoerl and Kennard 30 years later [34]. Other
important regularizers include the `0 penalty, R(x) = ‖x‖0,
and the sparsity-promoting convex `1 relaxation R(x) =
‖x‖1, introduced by Chen and Donoho in 1994 [46] as basis
pursuit, and by Tibshirani in 1996 [49] as the least absolute
shrinkage and selection operator (LASSO). More generally,
the `1 norm was introduced much earlier: as a penalty in
1969 [42], with specialized algorithms in 1973 [23], and as a
robust loss in geophysics in 1973 [21]. In modern optimiza-
tion, nonsmooth regularizers are widely used across a diverse
set of applications, including in the training of neural network
architectures [33]. Figure 1(a) illustrates the classic sparse
regression iteration procedure for LASSO. Given the 1-norm
of the solution, i.e. ‖x̂‖1 = τ , the solution can be found by
‘inflating’ the level set of the data misfit until it intersects the
ball B1 ≤ τ . The geometry of the level sets influences both
the robustness of the procedure with respect to noise, and the
convergence rate of iterative algorithms used to find x̂.
Contributions. In this paper, we propose a broad framework
for sparse relaxed regularized regression, called SR3. The
key idea of SR3 is to solve a regularized problem that has
three advantages over the state-of-the-art: (1) solutions are
superior with respect to errors, false positives, and condi-
tioning, (2) relaxation allows extremely fast algorithms for
both convex and nonconvex formulations, and (3) the meth-
ods apply to composite regularizers. Rigorous theoretical
results supporting these claims are presented in Section II.
We demonstrate the advantages of SR3 (computational ef-
ficiency, higher accuracy, faster convergence rates, greater
flexibility) across a range of regularized regression problems
with synthetic and real data, including applications in com-
pressed sensing, LASSO, matrix completion, TV regulariza-
tion, and group sparsity using a range of test problems in
Section III.

II. SR3 METHOD
Our goal is to improve the robustness, computational effi-
ciency, and accuracy of sparse and nonsmooth formulations.
We relax (1) using an auxiliary variable w ∈ Rn that is
forced to be close to Cx. Relaxation was recently shown
to be an efficient technique for dealing with the class of
nonconvex-composite problems [57]. The general SR3 for-
mulation modifies (1) to the following

min
x,w

1

2
‖Ax− b‖2 + λR(w) +

κ

2
‖Cx−w‖2, (2)

where κ is a relaxation parameter that controls the gap
between Cx andw. Importantly, κ controls both the strength
of the improvements to the geometry/regularity of the relaxed
problem relative to the original and the fidelity of the relaxed
problem to the original. To recover a relaxed version of
LASSO, for example, we take R(·) = ‖ · ‖1 and C = I. The
SR3 formulation allows non-convex `p “norms” with p < 1,
as well as smoothly clipped absolute deviation (SCAD) [28],
and easily handles linear composite regularizers. Two widely
used examples that rely on compositions are compressed
sensing formulations that use tight frames [25], and total
variation (TV) regularization in image denoising [45].

In the convex setting, the formulation (2) fits into a class
of problems studied by Bauschke, Combettes, and Noll [5],
who credit the natural alternating minimization algorithm to
Acker and Prestel in 1980 [1], and the original alternating
projections method to Cheney and Goldstein in 1959 [20] and
Von Neumann in 1950 [53, Theorem 13.7]. The main novelty
of the SR3 approach is in using (2) to extract information
from the w variable. We also allow nonconvex regularizers
R(·), using the structure of (2) to simplify the analysis.

The success of SR3 stems from two key ideas. First,
sparsity and accuracy requirements are split betweenw andx
in the formulation (2), relieving the pressure these competing
goals put on x in (1). Second, we can partially minimize (2)
in x to obtain a function in w alone, with nearly spherical
level sets, in contrast to the elongated elliptical level sets
of ‖Ax − b‖2. In w coordinates, it is much easier to find
the correct support. Figure 1(b) illustrates this advantage of
SR3 on the LASSO problem.

A. SR3 AND VALUE FUNCTION OPTIMIZATION
Associated with (2) is a value function formulation that
allows us to precisely characterize the relaxed framework.
The value function is obtained by minimizing (2) in x:

v(w) := min
x

1

2
‖Ax− b‖2 +

κ

2
‖Cx−w‖2. (3)

We assume that Hκ = A>A + κC>C is invertible. Under
this assumption, x(w) = H−1κ

(
A>b+ κC>w

)
is unique.

We now define

Fκ =

[
κAH−1κ C>√

κ(I− κCH−1κ C>)

]
, Fκ ∈ R(m+n)×n

Gκ =

[
I−AH−1κ A>√
κCH−1κ A>

]
, Gκ ∈ R(m+n)×m

gκ = Gκb, gκ ∈ Rm+n

(4)
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FIGURE 1: (a) Level sets (green ellipses) of the quadratic part of LASSO (1) and corresponding path of prox-gradient to
the solution (40 iterations) in x-coordinates. (b) Level sets (green spheres) of the quadratic part of the SR3 value function (3)
and corresponding SR3 solution path (2 iterations) in relaxed coordinates w. Blue octahedra show the `1 ball in each set of
coordinates. SR3 decreases the singular values of Fκ relative to those of A with a weaker effect on the small ones, ‘squashing’
the level sets into approximate spheres, accelerating convergence, and improving performance.

which gives a closed form for (3):

v(w) =
1

2
‖Fκw − gκ‖2.

Problem (2) then reduces to

min
w

1

2
‖Fκw − gκ‖2 + λR(w) . (5)

The ellipsoid in Fig. 1(a) shows the level sets of ‖Ax− b‖2,
while the spheroid in Fig. 1(b) shows the level sets of
‖Fκw − gκ‖2. Partial minimization improves the condi-
tioning of the problem, as seen in Figure 1, and can be
characterized by a simple theorem.

Denote by σi(·) the function that returns the i-th largest
singular value of the argument, with σmax(A) denoting
the largest singular value σ1(A), and σmin(A) denoting
the smallest (reduced) singular value σmin(m,d)(A). Let
cond(A) := σmax(A)/σmin(A) denote the condition num-
ber of A. The following result relates singular values of Fκ
to those of A and C. Stronger results apply to the special
cases C = I, which covers the Lasso, and C>C = I, which
covers compressed sensing formulations with tight frames
(C = Φ> with ΦΦ> = I) [19], [25], [27].

Theorem 1. When λ = 0, (5) and (1) share the same solution
set. We also have the following relations:

F>κFκ = κI− κ2CH−1κ C> (6)

σi(F
>
κFκ) = κ− κ2σn−i+1(CH−1κ C>). (7)

In addition, 0 � F>κFκ � κI always, and when n ≥ d and
C has full rank (i.e. C>C is invertible), we have

σmin(F>κFκ) ≥ σmin(A>A)/σmax(C>C)

1 + σmin(A>A)/(κσmax(C>C))
.

When C = I, we have

F>κFκ = A>(I + AA>/κ)−1A (8)

σi(F
>
κFκ) =

σi(A
>A)

1 + σi(A>A)/κ
, (9)

so that the condition numbers of Fκ and A are related by

cond(Fκ) = cond(A)

√
κ+ σmin(A)2

κ+ σmax(A)2
. (10)

Theorem 1 lets us interpret (5) as a re-weighted version of
the original problem (1). In the general case, the properties
of F depend on the interplay between A and C. The re-
weighted linear map Fκ has superior properties to A in
special cases. Theorem 1 gives strong results for C = I,
and we can derive analogous results when C has orthogonal
columns and full rank.

Corollary 1. Suppose that C ∈ Rn×d with n ≥ d and
C>C = Id. Then,

σi(Fκ) =

{ √
κ

σi−(n−d)(A)√
κ+σi−(n−d)(A)2

i > n− d
√
κ i ≤ n− d

. (11)

For n > d, this implies

cond(Fκ) = cond(A)

√
κ+ σmin(A)2

σmax(A)2
. (12)

When n = d, this implies

cond(Fκ) = cond(A)

√
κ+ σmin(A)2

κ+ σmax(A)2
. (13)
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Algorithm 1 SR3 for (2), concept

1: Input: w0

2: Initialize: k = 0, η ≤ 1
κ

3: while not converged do
4: k← k + 1
5: wk ← proxηλR(wk−1 − ηF>κ (Fκw

k−1 − gκ))

6: Output: wk

Algorithm 2 SR3 for (2), implementation

1: Input: w0

2: Initialize: k = 0, η = 1
κ

3: while not converged do
4: k← k + 1
5: xk ←H−1κ

(
A>b+ κC>wk−1)

6: wk ← proxηλR(Cxk)

7: Output: wk

Proof. Let C̄ =
[
C C⊥

]
where the columns of C⊥ form

an orthonormal basis for the orthogonal complement of the
range of C. Then, by Theorem 1,

C̄>F>κFκC̄ =

[
A>(I + AA>/κ)−1A

κIn−d

]
. (14)

The result follows from the second part of Theorem 1 .

When C is a square orthogonal matrix, partial minimiza-
tion of (3) shrinks the singular values of Fκ relative to A,
with less shrinkage for smaller singular values, which gives a
smaller condition number as seen in Figure 1 for C = I. As a
result, iterative methods for (5) converge much faster than the
same methods applied to (1), especially for ill-conditioned
A. The geometry of the level sets of (5) also encourages
the discovery of sparse solutions; see the path-to-solution for
each formulation in Figure 1. The amount of improvement
depends on the size of κ, with smaller values of κ giving
better conditioned problems. For instance, consider setting
κ = (σmax(A)2 − σmin(A)2)/µ2 for some µ > 1. Then, by
Corollary 1, cond(Fκ) ≤ 1 + cond(A)/µ.

B. ALGORITHMS FOR THE SR3 PROBLEM
Problem (5) can be solved using a variety of algorithms, in-
cluding the prox-gradient method detailed in Algorithm 1. In
the convex case, Algorithm 1 is equivalent to the alternating
method of [5]. The w update is given by

ŵk+1 = proxλ
κR

(
wk − 1

κ
F>κ (Fκw

k − gκ)

)
, (15)

where proxλ
κR

is the proximity operator (prox) for R (see
e.g. [22]) evaluated at Cx. The prox in Algorithm 1 is
easy to evaluate for many important convex and nonconvex
functions, often taking the form of a separable atomic op-
erator, i.e. the prox requires a simple computation for each

Algorithm 3 Prox-gradient for (1)

1: Input: x0

2: Initialize: k = 0, η ≤ 1
σmax(A)2

3: while not converged do
4: k← k + 1
5: xk ← proxηλR(C·)(x

k−1 − ηA>(Axk−1 − b))
6: Output: xk

individual entry of the input vector. For example, proxλ‖·‖1
is the soft-thresholding (ST) operator:

proxλ‖·‖1(x)i = sign(xi) max(|xi| − λ, 0). (16)

Algorithm 1 is a conceptual description of the proximal
gradient algorithm applied to (5), and is analyzed below.
However, it is not necessary to form or apply Fκ to
implement the algorithm. To make this clear, a simpler,
equivalent method that computes an explicit xk in order to
simplify the update for wk is specified in Algorithm 2. The
equivalence of these algorithms is shown in the Appendix.

In the pseudocode, partial minimization in x is written
using the normal equations, but any least squares solution
may be used. When Hκ cannot be directly inverted, (e.g. it
is only available through its action on a vector or it is very
large) Algorithm 2 admits an inexact modification, where an
iterative method (e.g. conjugate gradient) is used to get xk.

It is useful to contrast Algorithm 1 with the proximal
gradient algorithm for the original problem (1), detailed in
Algorithm 3. First, Algorithm 3 may be difficult to imple-
ment when C 6= I, as the prox operator may no longer be
separable or atomic. An iterative algorithm is required to
evaluate

proxλ‖C·‖1(x) = arg min
y

1

2λ
‖x− y‖2 + ‖Cy‖1. (17)

In contrast, Algorithm 1 always solves (5), which is regu-
larized by R(·) rather than by a composition R(C·), with
C instead changing Fκ and gκ, see (4). In the equivalent
Algorithm 2, C affects the update of xk, and w is up-
dated using the prox of R(·) evaluated at the vector Cxk.
Viewing SR3 as a prox-gradient for the value function in
Algorithm 1 has important consequences, since the prox-
gradient method converges for a wide class of problems,
including non-convex regularizers [4]. For regularized least
squares problems specifically, we derive a self-contained
convergence theorem with a sublinear convergence rate.

Theorem 2 (Proximal Gradient Descent for Regularized
Least Squares). Consider the linear regression objective,

min
x

p(x) :=
1

2
‖Ax− b‖2 + λR(x) ,

where p is bounded below, so that

−∞ < p∗ = inf
x
p(x),
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and R may be nonsmooth and nonconvex. With step t =
1/σmax(A)2, the iterates generated by Algorithm 3 satisfy

vk+1 := (‖A‖22I−A>A)(xk − xk+1) ∈ ∂p(xk+1),

i.e. vk+1 is an element of the subdifferential of p(x) at the
point xk+1

1, and

min
k=0,...N

‖vk+1‖2 ≤
1

N

N−1∑
k=0

‖vk+1‖2 ≤
‖A‖22
N

(p(x0)−p∗) .

Therefore Algorithm 3 converges at a sublinear rate to a
stationary point of p.

Theorem 2 always applies to the SR3 approach, which
uses value function (5). When C = I, we can also compare
the convergence rate of Algorithm 1 for (5) to the rate for
Algorithm 3 for (3). In particular, the rates of Algorithm 1
are independent of A when A does not have full rank, and
depend only weakly on A when A has full rank, as detailed
in Theorem 3.

Theorem 3. Suppose that C = I. Let x∗ and w∗ denote
the minimum values of px(x) := 1

2‖Ax − b‖2 + R(x) and
pw(w) := 1

2‖Fκw − gκ‖2 + R(w), respectively. Let xk
denote the iterates of Algorithm 3 applied to px, and wk
denote the iterates of Algorithm 1 applied to pw, with step
sizes ηx = 1

σmax(A)2 and ηw = 1
σmax(Fκ)2

. The iterates
always satisfy

vxk+1 = (‖A‖22I−A>A)(xk − xk+1) ∈ ∂px(xk+1)

vwk+1 = (κI− F>F)(wk −wk+1) ∈ ∂pw(wk+1).

For general R and any A we have the following rates:

1

N

N−1∑
k=0

‖vxk+1‖2 ≤
‖A‖22
N

(px(x0)− p∗x)

1

N

N−1∑
k=0

‖vwk+1‖2 ≤
κ

N
(pw(x0)− p∗w).

For convex R and any A we also have

px(x)− px(x∗)
‖x0 − x∗‖2 ≤ σmax(A)2

2(k + 1)

pw(w)− pw(w∗)
‖w0 −w∗‖2 ≤ σmax(Fκ)2

2(k + 1)

≤
σmax(A)2

1+σmax(A)2/κ

2(k + 1)
≤ κ

2(k + 1)
.

For convex R and A with full rank, we also have

‖xk − x∗‖2
‖x0 − x∗‖2 ≤

(
1− σmin(A)2

σmax(A)2

)k
‖wk −w∗‖2
‖w0 −w∗‖2 ≤

(
1− σmin(A)2

σmax(A)2
σmax(A)2 + κ

σmin(A)2 + κ

)k
1For nonconvex problems, the subdifferential must be carefully defined;

see the preliminaries in the Appendix.

1
(a) `0 norm.

1
(b) Clipped absolute deviation.

1
(c) `p norm (p = 1

2
).

1
(d) `p norm (p = 1

4
).

FIGURE 2: Nonconvex sparsity promoting regularizers.

When C>C = I, Algorithm 3 may not be implementable.
However, SR3 is implementable, with rates equal to those for
the C = I case when n = d and with rates as in the following
corollary when n > d.

Corollary 2. When C>C = I and n > d, let w∗ denote the
minimum value of pw(w) := 1

2‖Fκw − gκ‖2 + R(w), and
let wk denote the iterates of Algorithm 1 applied to pw, with
step size ηw = 1

κ . The iterates always satisfy

vwk+1 = (κI− F>F)(wk −wk+1) ∈ ∂pw(wk+1).

For general R and any A we have the following rates:

1

N

N−1∑
k=0

‖vwk+1‖2 ≤
κ

N
(pw(x0)− p∗w).

For convex R and any A we also have

pw(w)− pw(w∗)
‖w0 −w∗‖2 ≤ κ

2(k + 1)

For convex R and A with full rank, we also have

‖wk −w∗‖2
‖w0 −w∗‖2 ≤

(
1− σmin(A>A)

κ+ σmin(A>A)

)k

Algorithm 1 can be used with both convex and nonconvex
regularizers, as long as the prox operator of the regularizer is
available. A growing list of proximal operators is reviewed
by [22]. Notable nonconvex prox operators in the literature
include (1) indicator of set of rank r matrices, (2) spectral
functions (with proximable outer functions) [26], [38], (3)
indicators of unions of convex sets (project onto each and
then choose the closest point), (4) MCP penalty [56], (5)
firm-thresholding penalty [29], and (6) indicator functions of
finite sets (e.g., x ∈ {−1, 0, 1}d). Several nonconvex prox
operators specifically used in sparse regression are detailed
in the next section.
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R(x) r(x) proxαr(z) Solution

‖x‖1 |x|
{
sign(z)(|z| − α), |z| > α

0, |z| ≤ α
Analytic

‖x‖0

{
1, x 6= 0

0, x = 0

{
0, |z| ≤

√
2α

z, |z| >
√
2α

Analytic

‖x‖pp (p < 1) |x|p see Appendix Coordinate-wise Newton

CAD(x; ρ)

{
|x|, |x| ≤ ρ
ρ, |x| > ρ


z, |z| > ρ

sign(z)(|z| − α), α < |z| ≤ ρ
0, |z| ≤ α

Analytic

TABLE 1: Proximal operators of sparsity-promoting regularizers.

C. NONCONVEX REGULARIZERS AND CONSTRAINTS

1) Nonconvex Regularizers: `0.

The 1-norm is often used as a convex alternative to `0, defined
by ‖x‖0 = |{i : xi 6= 0}|, see panel (a) of Figure 2.
The nonconvex `0 has a simple prox — hard thresholding
(HT) [9], see Table 1. The SR3 formulation with the `0
regularizer uses HT instead of the ST operator (16) in line
5 of Algorithm 1.

2) Nonconvex Regularizers: `pp for p ∈ (0, 1)

The `pp regularizer for p ∈ (0, 1) is often used for sparsity
promotion, see e.g. [36] and the references within. Two
members of this family are shown in panels (c) and (d) of
Figure 2. The `pp prox subproblem is given by

min
x

fα,p(x; z) :=
1

2α
(x− z)2 + |x|p (18)

This problem is studied in detail by [18]. Closed form so-
lutions are available for special cases p ∈

{
1
2 ,

2
3

}
; but a

provably convergent Newton method is available for all p.
Using a simple method for each coordinate, we can globally
solve the nonconvex problem (18) [18, Proposition 8]. Our
implementation is summarized in the Appendix. The `1/2
regularizer is particularly useful for CS, and is known to do
better than either `0 or `1.

3) Nonconvex Regularizers: (S)CAD

The (Smoothly) Clipped Absolute Deviation (SCAD) [28] is
a sparsity promoting regularizer used to reduce bias in the
computed solutions. A simple un-smoothed version (CAD)
appears in panel (b) of Figure 2, and the analytic prox is
given in Table 1. This regularizer, when combined with SR3,
obtains the best results in the CS experiments in Section III.

4) Composite Regularization: Total Variation (TV).

TV regularization can be written as TV(x) = R(Cx) =
‖Cx‖1, with C a (sparse) difference matrix (see (23)). The
SR3 formulation is solved by Algorithm 1, a prox-gradient
(primal) method. In contrast, most TV algorithms use primal-
dual methods because of the composition ‖Cx‖1 [16].

5) Constraints as Infinite-Valued Regularizers.
The term R(·) does not need to be finite valued. In particular,
for any set C that has a projection, we can take R(·) to be the
indicator function of C, given by

RC(x) =

{
0 x ∈ C
∞ x 6∈ C. ,

so that proxR(x) = projC(x). Simple examples of such reg-
ularizers include convex non-negativity constraints (x ≥ 0)
and nonconvex spherical constraints (‖x‖2 = r).

D. OPTIMALITY OF SR3 SOLUTIONS
We now consider the relationship between the optimal solu-
tion ŵ to problem (5), and the original problem (1).

Theorem 4 (Optimal Ratio). Assume C = I, and let λ1
for (1) and λ2 for (5) be related by the ratio τ = λ2/λ1,
and let ŵk be the optimal solution for (5) with parameter λ2.
If λ2 is set to be τλ1 where

τ̂ = argmin
τ>0

‖τI−κH−1κ ‖2 =
κ

2
(σmax(H−1κ )+σmin(H−1κ )) ,

then the distance to optimality of ŵ1 for (1) is no more than

σmax(A)2 − σmin(A)2

σmax(A)2 + σmin(A)2 + 2κ
‖A>Aŵ −A>b‖.

Theorem 4 gives a way to choose λ2 given λ1 so that
ŵ is as close as possible to the stationary point of (1), and
characterizes the distance of ŵ to optimality of the original
problem. The proof is given in the Appendix.

Theorem 4 shows that as κ increases, the solution ŵmoves
closer to being optimal for the original problem (1). On the
other hand, Theorem 3 suggests that lower κ values regular-
ize the problem, making it easier to solve. In practice, we find
that ŵ is useful and informative in a range of applications
with moderate values of κ, see Section III.

III. RESULTS
The formulation (1) covers many standard problems, includ-
ing variable selection (LASSO), compressed sensing, TV-
based image de-noising, and matrix completion, shown in
Fig. 3. In this section, we demonstrate the general flexibility
of the SR3 formulation and its advantages over other state-of-
the-art techniques. In particular, SR3 is faster than competing
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FIGURE 3: Common optimization applications where the SR3 method improves performance. For each method, the specific
implementation of our general architecture (2) is given.

algorithms, and w is far more useful in identifying the
support of sparse signals, particularly when data are noisy
and A is ill-conditioned.

A. SR3 VS. LASSO AND COMPRESSED SENSING
Using Eqs. (1) and (2), the LASSO and associated SR3 prob-
lems are

min
x

1

2
‖Ax− b‖2 + λ‖x‖1 (19)

min
x,w

1

2
‖Ax− b‖2 + λ‖w‖1 +

κ

2
‖x−w‖2 (20)

where A ∈ Rm×n with m ≥ n. LASSO is often used for
variable selection, i.e. finding a sparse set of coefficients x
that correspond to variables (columns of A) most useful for
predicting the observation b. We compare the quality and
numerical efficiency of Eqs. (19) and (20). The formulation
in (20) is related to an earlier sequentially thresholded least
squares algorithm that was used for variable selection to
identify nonlinear dynamical systems from data [11].

In all LASSO experiments, observations are generated by
b = Axt + σε, where xt is the true signal, and ε is
independent Gaussian noise.

1) LASSO Path.
The LASSO path refers to the set of solutions obtained by
sweeping over λ in (1) from a maximum λ, which gives x =
0, down to λ = 0, which gives the least squares solution. In
[48], it was shown that (19) makes mistakes early along this
path.
Problem setup. As in [48], the measurement matrix A is
1010 × 1000, with entries drawn from N (0, 1). The first
200 elements of the true solution xt are set to be 4 and the
rest to be 0; σ = 1 is used to generate b. Performing a λ
sweep, we track the fraction of incorrect nonzero elements
in the last 800 entries vs. the fraction of nonzero elements in
the first 200 entries of each solution, i.e. the false discovery
proportion (FDP) and true positive proportion (TPP).
Parameter selection. We fix κ = 100 for SR3. Results are
presented across a λ-sweep for both SR3 and LASSO.
Results. The results are shown in the top-right panel of
Fig. 4. LASSO makes mistakes early along the path [48]. In
contrast, SR3 recovers the support without introducing any
false positives along the entire path until overfitting sets in
with the 201st nonzero entry.
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FIGURE 4: Top Left: SR3 approach (red) is orders of magni-
tude faster than ADMM (green) or other first-order methods
such as prox-gradient (gray). While IRL (blue) requires a
comparable number of iterations, its cost per iteration is
more expensive than SR3. Top Right: True Positives vs.
False Positives along the LASSO path (blue) and along the
SR3 path (red). Bottom: F1 score of SR3 (red) and LASSO
formulation (blue) with respect to different noise levels.

2) Robustness to Noise.
Observation noise makes signal recovery more difficult. We
conduct a series of experiments to compare the robustness
with respect to noise of SR3 with LASSO.
Problem setup. We choose our sensing matrix with dimen-
sion 200 by 500 and elements drawn independently from a
standard Gaussian distribution. The true sparse signal has 20
non-zero entries, and we consider a range of noise levels
σ ∈ {0.2i : i = 0, 1, . . . , 20}. For each σ, we solve (19)
and (20) for 200 different random trials. We record the F1-
score, F1 = 2(precision · recall)/(precision + recall), to
compare reconstruction quality. In the experiments, any entry
in x which is greater than 0.01 is considered non-zero for the
purpose of defining the recovered support.
Parameter selection. We fix κ = 100 and perform a λ-
sweep for both (19) and (20) to record the best F1-score
achievable by each method.
Results. We plot the average normalized F1-score for dif-
ferent noise levels in the bottom panel of Fig. 4. SR3 has a
uniformly higher F1-score across all noise levels.

3) Computational Efficiency.
We compare the computational efficiency of the Alter-
nating Directions Method of Multipliers (ADMM) (see
e.g. [10], [32]), proximal gradient algorithms (see e.g. [22])
on (19) with Algorithm 1, and a state-of-the-art Itera-
tively Reweighted Least-Squares (IRL) method, specifically
IRucLq-v as in [36].

Problem setup. We generate the observations with σ = 0.1.
The dimension of A is 600× 500, and we vary the condition
number of the matrix A from 1 to 100. For each condition
number, we solve the problem 10 times and record the
average number of iterations required to reach a specified tol-
erance. We use the distance between the current and previous
iteration to detect convergence for all algorithms. When the
measure is less than a tolerance of 10−5 we terminate the
algorithms.
Parameter selection. We choose κ = 1, λ in (19) to be
‖A>b‖∞/5, and λ in (20) to be ‖F>κ gκ‖∞/5.

TABLE 2: Complexity Comparison for A ∈ Rm×n, m ≥ n.
Method One-time Overhead Cost of generic iteration

PG — O(mn)
ADMM O(mn2 + n3) O(n2)

IRucLq-v — O(mn2 + n3)
SR3 O(mn2 + n3) O(n2)

Results. The results (by number of iterations) are shown in
the top left panel of Fig. 4. The complexity of each iteration
is given in Table 2. The generic iterations of PG, ADMM,
and SR3 have nearly identical complexity, with ADMM and
SR3 requiring a one-time formation and factorization of an
n× n matrix. IRucLq-v requires the formation and inversion
of such a matrix at each iteration. From Fig. 4, SR3 requires
far fewer iterations than ADMM and the proximal gradient
method, especially as cond(A) increases. SR3 and IRucLq-
v require a comparable number of iterations. A key differ-
ence is that ADMM requires dual variables, while SR3 is
fundamentally a primal-only method. When cond(A) = 50,
ADMM needs almost 104 iterations to solve (19); proximal
gradient descent requires 102 iterations; and SR3 needs 10
iterations to solve (20). Overall, the SR3 method takes by
far the least total compute time as the condition number in-
creases. Further experiments, particularly for larger systems
where iterative methods are needed, are left to future work.

4) SR3 for Compressed Sensing.
When m � n, the variable selection problem targeted
by (19) is often called compressed sensing (CS). Sparsity
is required to make the problem well-posed, as (19) has
infinitely many solutions with λ = 0. In CS, columns of A
are basis functions, e.g. the Fourier modes Aij=exp(iαjti),
and b may be corrupted by noise [13]. In this case, compres-
sion occurs when m is smaller than the number of samples
required by the Shannon sampling theorem.

Finding the optimal sparse solution is inherently combina-
torial, and brute force solutions are only feasible for small-
scale problems. In recent years, a series of powerful theo-
retical tools have been developed in [13]–[15], [24], [25] to
analyze and understand the behavior of (1) withR(·) = ‖ ·‖1
as a sparsity-promoting penalty. The main theme of these
works is that if there is sufficient incoherence between the
measurements and the basis, then exact recovery is possible.
One weakness of the approach is that the incoherence re-
quirement — for instance, having a small restricted isometry
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FIGURE 5: Compressed sensing results: recovering a 20-sparse signal in R500 from a small number of measurements. We
plot the recovery rate as the number of measurements increases. Line color and style are determined by the regularizer
while marker shapes are determined by the algorithm/formulation used. For readability, only the best performing algorithm
for each regularizer is plotted in bold, with the rest opaque. Left panel: the sensing matrix A has Gaussian entries. Nonconvex
regularizers are in general more effective than convex regularizers. SR3 is the most effective formulation for each regularizer
aside from `1/2 for which the standard formulation with the IRucLq-v algorithm is best. SR3 CAD achieves a better final result
compared to `1/2 with IRLucLq-v. Right panel: the sensing matrix A has uniform entries. The traditional convex approaches
fail dramatically as there is no longer a RIP-like condition. Even for the nonconvex regularizers, IRucLq-v shows significant
performance degradation, while proximal gradient descent never succeeds. However, SR3 approaches still succeed, with only
a minor efficiency gap (with respect to m/k) compared to the easier conditions in the left panel.

constant (RIC) [15] — may not be satisfied by the given
samples, leading to sub-optimal recovery.
Problem setup. We consider two synthetic CS problems.
The sparse signal has dimension d = 500 and k = 20
nonzero coefficients with uniformly distributed positions and
values randomly chosen as −2 or 2. In the first experiment,
the entries of A ∈ Rm×n are drawn independently from
a normal distribution, which will generally have a small
RIC [15] for sufficiently large m. In the second experiment,
entries of A ∈ Rm×n are drawn from a uniform distribution
on the interval [0, 1], which are generally more coherent than
using Gaussian entries.

In the classic CS context, recovering the support of the
signal (indices of non-zero coefficients) is the main goal, as
the optimal coefficients can be computed in a post-processing
step. In the experiments, any entry in x which is greater than
0.01 is considered non-zero for the purpose of defining the
recovered support. To test the effect of the number of samples
m on recovery, we take measurements with additive Gaussian
noise of the form N (0, 0.1), and choose m ranging from
k to 20k. For each choice of m we solve (1) and (2) 200
times. We compare results from 10 different formulations
and algorithms: sparse regression with `0, `1/2, `1 and CAD
regularizers using PG; SR3 reformulations of these four
problems using Algorithm 1, and sparse regression with `1/2
and `1 regularizers using IRucLq-v.
Parameter selection. For each instance, we perform a grid
search on λ to identify the correct non-zero support, if
possible. The fraction of runs for which there is a λ with
successful support recovery is recorded. For all experiments
we fix κ = 5, and we set ρ = 0.5 for the CAD regularizer.
Results. As shown in Figure 5, for relatively incoherent
random Gaussian measurements, both the standard formula-
tion (1) and SR3 succeed, particularly with the nonconvex

regularizers. CAD(·, ρ), which incorporates some knowl-
edge of the noise level in the parameter ρ, performs the
best as a regularizer, followed by `1/2, `0, and `1. The
SR3 formulation obtains a better recovery rate for each m
for most regularizers, with the notable exception of `1/2. The
IRucLq-v algorithm (which incorporates some knowledge
of the sparsity level as an internal parameter) is the most
effective method for `1/2 regularization for such matrices.

For more coherent uniform measurements, SR3 obtains a
recovery rate which is only slightly degraded from that of
the Gaussian problem, while the results using (1) degrade
drastically. In this case, SR3 is the most effective approach
for each regularizer and provides the only methods which
have perfect recovery at a sparsity level of m/k ≤ 10,
namely SR3-CAD, SR3-`1/2, and SR3-`0.
Remark: Many algorithms focus on the noiseless setting in
compressive sensing, where the emphasis shifts to recovering
signals that may have very small amplitudes [36]. SR3 is not
well suited to this setting, since the underlying assumption is
that w is near to x in the least squares sense.

5) Analysis vs. Synthesis
Compressive sensing formulations fall into two broad cate-
gories, analysis (21) and synthesis (22) (see [19], [27]):

min
x

1

2
‖Ax− b‖2 +R(Cx), (21)

min
ξ

1

2
‖AC>ξ − b‖2 +R(ξ), (22)

where C is the analyzing operator, x ∈ Rd and ξ ∈ Rn, and
we assume n � d. In this section, we consider C>C = I,
i.e. C> is a tight frame. Synthesis represents x using the
over-determined system C>, and recovers the coefficients
ξ using sparse regression. Analysis directly works over the
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FIGURE 6: Comparison of standard analysis with SR3-
analysis. Top panel: result using SR3-analysis, plotting the
final w (red) against the true signal (dark grey). Bottom
panel: result using standard analysis and the IRL-D algo-
rithm, plotting final Cx (blue) against the true signal (dark
grey).

domain of the underlying signal x with the prior that Cx is
sparse. The two methods are equivalent when n ≤ d, and
very different when n > d [19]. Both forms appear in a va-
riety of inverse problems including denoising, interpolation
and super-resolution. The work of [27] presents a thorough
comparison of (21) and (22) across a range of signals, and
finds that the effectiveness of each depends on problem type.

The SR3 formulation can easily solve both analysis and
synthesis formulations. We have focused on synthesis thus
far, so in this section we briefly consider analysis (21), under
the assumption that Cx is almost sparse. When l � d,
the analysis problem is formulated over a lower dimensional
space. However, since Cx is always in the range of C,
it can never be truly sparse. If a sparse set of coefficients
is needed, analysis formulations use post-processing steps
such as thresholding. SR3, in contrast, can extract the sparse
transform coefficients directly from the w variable. We com-
pare SR3 with the Iteratively Reweighted Least-Squares-type
algorithm IRL-D proposed by [35] for solving (21).
Problem setup. We choose our dimensions to be n = 1024,
d = 512 and m = 128. We generate the sensing matrix A
with independent Gaussian entries and the true sparse coef-
ficient ξt with 15 non-zero elements randomly selected from
the set {−1, 1}. The true underlying signal is xt = C>ξ and
the measurements are generated by b = Axt + σε, where
σ = 0.1 and ε has independent Gaussian entries. We use `1
as the regularizer, R(·) = λ‖ · ‖1.
Parameter selection. We set κ for SR3 to be 5, λ for SR3 to
be ‖F>κ gκ‖∞/2, and ‖A>b‖∞/10 for IRL-D. The λs are
chosen to achieve the clearest separation between active and
inactive signal coefficients for each method.
Results. The results are shown in Figure 6. The w in the
SR3 analysis formulation is able to capture the support of the
true signal cleanly, while Cx from the (21) identifies the sup-
port but is not completely sparse, requiring post-processing
steps such as thresholding to get a support estimate.

B. SR3 FOR TOTAL VARIATION REGULARIZATION
Natural images are effectively modeled as large, smooth
features separated by a few sparse edges. It is common to
regularize ill-posed inverse problems in imaging by adding
the so-called total variation (TV) regularization [7], [16],
[17], [40], [45], [47], [54]. Let Xij denote the i, j pixel of an
m×n image. For convenience, we treat the indices as doubly
periodic, i.e. Xi+pm,j+qn = Xi,j for p, q ∈ Z. Discrete x
and y derivatives are defined by [DxX]ij = Xi+1,j − Xij

and [DyX]ij = Xi,j+1 − Xij , respectively. The (isotropic)
total variation of the image is then given by the sum of the
length of the discrete gradient at each pixel, i.e.

RTV

(
DxX
DyX

)
:=

m∑
i=1

n∑
j=1

√
[DxX]2ij + [DyX]2ij . (23)

Adding the TV regularizer (23) to a regression problem cor-
responds to imposing a sparsity prior on the discrete gradient.

Consider image deblurring (Fig. 7). The two-dimensional
convolution Y = A ∗ X is given by the sum Yij =∑m
p=1

∑n
q=1ApqXi−p,j−q . Such convolutions are often used

to model photographic effects, like distortion or motion
blur. Even when the kernel A is known, the problem of
recovering X given the blurred measurement is unstable
because measurement noise is sharpened by ‘inverting’ the
blur. Suppose that B = A∗X+νG, where G is a matrix with
entries given by independent entries from a standard normal
distribution and ν is the noise level. To regularize the problem
of recovering X from the corrupted signal B, we add the TV
regularization:

X̂ = argmin
X

1

2
‖A ∗X−B‖2F + λRTV

(
DxX
DyX

)
. (24)

The natural SR3 reformulation is given by

min
X,wx,wy

1

2
‖A∗X−B‖2F

+λRTV

(
wx
wy

)
+
κ

2

∥∥∥∥wx−DxX
wy−DyX

∥∥∥∥2
F

. (25)

Problem setup. In this experiment, we use the standard
Gaussian blur kernel of size k and standard deviation σ,
given by Aij = exp

(
−(i2 + j2)/(2σ2)

)
, when |i| < k

and |j| < k, with the rest of the entries of A determined
by periodicity or equal to zero. The signal X is the classic
“cameraman” image of size 512 × 512. As a measure of the
progress of a given method toward the solution, we evaluate
the current loss at each iteration (the value of either the right
hand side of (24) or (25)).
Parameter Selection. We set σ = 2, k = 4, ν = 2, and
λ = 0.075. The value of λ was chosen by hand to achieve
reasonable image recovery. For SR3, we set κ = 0.25.
Results. Figure 7 demonstrates the stabilizing effect of TV
regularization. Panels (a) and (b) show a detail of the image,
i.e. X, and the corrupted image, i.e. B, respectively. In panel
(c), we see that simply inverting the effect of the blur results
in a meaningless image. Adding TV regularization gives a
more reasonable result in panel (d).
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FISTA using Algorithm 4 yields an immediate significant
improvement. Panels (a) and (b) show a detail of the original
cameraman image and the image corrupted as described in
the text, respectively. The incredibly noisy image resulting
from inverting the blur without regularization (λ = 0) is
shown in panel (c) and the crisper image resulting from the
regularized SR3 problem (with λ = .075) is shown in panel
(d) (the image resulting from the ADMM type algorithm of
[16] is visually similar, with a similar SNR)

Algorithm 4 FISTA for SR3 TV

1: Input: w0

2: Initialize: k = 0, a0 = 1, v0 = w0, η ≤ 1
κ

3: while not converged do
4: k← k + 1
5: vk ← proxηR(wk−1 − η(F>κ (Fκw

k−1 − gκ)))

6: ak ← (1 +
√

1 + 4a2k−1)/2

7: wk ← vk + (ak−1 − 1)/ak(vk − vk−1)

8: Output: wk

In the top plot of Fig. 7, we compare SR3 and a primal-
dual algorithm [16] on the objectives (25) and (24), respec-
tively. Algorithm 1 converges as fast as the state-of-the-art
method of [16]; it is not significantly faster because for
TV regularization, the equivalent of the map C does not
have orthogonal columns (so that the stronger guarantees
of Section II do not apply) and the equivalent of Fκ, see

(4), is still ill-conditioned. Nonetheless, since SR3 gives a
primal-only method, it is straightforward to accelerate using
FISTA [8]. In Fig. 7, we see that this accelerated method
converges much more rapidly to the minimum loss, giving a
significantly better algorithm for TV deblurring. The FISTA
algorithm for SR3 TV is detailed in Algorithm 4.

We do not compare the support recovery of the two for-
mulations, (24) and (25), because the original signal does not
have a truly sparse discrete gradient. The recovered signals
for either formulation have comparable signal-to-noise ratios
(SNR), approximately 26.10 for SR3 and 26.03 for standard
TV (these numbers vary quite a bit based on parameter choice
and maximum number of iterations).
Analysis. We can further analyze SR3 for the specific C
used in the TV denoising problem in order to understand
the mediocre performance of unaccelerated SR3. Setting
x = vec(X), we have

A ∗X = F−1 Diag(ĉ)Fx, DxX = F−1 Diag(d̂x)Fx,
DyX = F−1 Diag(d̂y)Fx

where Fx corresponds to taking a 2D Fourier transform, i.e.
of Fx = vec(F (2d)X). Then, Fκ can be written as κF−1 Diag(ĉ)H−1

κ

[
Diag(d̂x) Diag(d̂y)

]
F

√
κF−1

(
I− κ

[
Diag(d̂x)

Diag(d̂y)

]
H−1
κ

[
Diag(d̂x) Diag(d̂y)

])
F

 ,

where

Hκ = F−1 Diag(ĉ� ĉ+ κd̂x � d̂x + κd̂y � d̂x)F ,
and � is element-wise multiplication. The SR3 formulation
(25) reduces to

min
w

1

2
‖Fκw − gκ‖2 + λ‖w‖1,

with Fκ and gκ as above, andw = vec

(
◦
√

W©2
x + W©2

y

)
,

where ◦
√
A and A©2 denote element-wise square root and

squaring operations, respectively.
Setting ĥ = ĉ� ĉ+ κd̂x � d̂x + κd̂y � d̂x, we have

F>κFκ = F−1AκF ,
with Aκ given by[
κI− κ2 Diag(d̂x � ĥ−1 � d̂x) −κ2 Diag(d̂x � ĥ−1 � d̂y)

−κ2 Diag(d̂y � ĥ−1 � d̂x) κI− κ2 Diag(d̂y � ĥ−1 � d̂y)

]
.

F>κFκ is a 2 × 2 block system of diagonal matrices, so we
can efficiently compute its eigenvalues, thereby obtaining the
singular values of Fκ. In Figure 8, we plot the spectrum
of Fκ. Half of the singular values are exactly

√
κ, and

the other half drop rapidly to 0. This spectral property is
responsible for the slow sublinear convergence rate of SR3.
Because of the special structure of the C matrix, Fκ does
not improve conditioning as in the LASSO example, where
C = I. The SR3 formulation still makes it easy to apply the
FISTA algorithm to the reduced problem (5), improving the
convergence rates.
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FIGURE 8: Singular values (ordered by magnitude) of Fκ
(left panel) and A (right panel) in the TV example.

C. SR3 FOR EXACT DERIVATIVES

TV regularizers are often used in physical settings, where
the position and the magnitude of the non-zero values for
the derivative are of interest. In this numerical example,
we use synthetic data to illustrate the efficacy of SR3 for
such problems. In particular, we demonstrate that the use of
nonconvex regularizers can improve performance.

Problem setup. Consider a piecewise constant step function
with dimension xt ∈ R500 and values from −2 to 2, see
the first row of Figure 9 for a sample plot. We take 100
random measurements b = Axt + σε of the signal, where
the elements of A and ε are i.i.d. standard Gaussian, and we
choose a noise level of σ = 1.
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FIGURE 9: SR3 TV regularization result on synthetic data.
The first row plots the averaging recovery signal (dashed
red line), integrating recovery signal (dot dashed green line)
and the true signal (solid blue line). Second row plots the
discretized derivative (solid red line) and true magnitude
(dashed blue line). First column contain the results come
from `0 regularization, second column is from `1.

To recover the signal, we solve the SR3 formulation

min
x,w

1

2
‖Ax− b‖2 + λR(w) +

1

2
‖w −Cx‖2,

whereR is chosen to be ‖·‖0 or ‖·‖1, and C is the appropriate
forward difference matrix. We want to recover the signal xt
and obtain an estimate of the discrete derivative using w.
Parameter selection. We set κ = 1 and choose λ by cross-
validation. We set λ = 0.07 when R = `1 and λ = 0.007
when R = `0.
Results. Results are shown in Figure 9, with the first row
showing the recovered signals (red dashed line and green dot-
dashed line) vs. true signal (blue solid line) and the second
row showing the estimated signal derivative w.

If we explicitly use the fact that our signal is a step
function, it is easy to recover an accurate approximation of
the signal using both x and w. We define groups of indices
corresponding to contiguous sequences for which wi = 0.
For such contiguous groups, we set the value of the recovered
signal to be the mean of the xi values. Ideally, there should
be five such groups. In order to recover the signal, we need
good group identification (positions of nonzeros in w) and
an unbiased estimation for signal x. From the red dash line
in the first row of Figure 9, we can see that both `0 and `1
reasonably achieve this goal using the grouping procedure.

However, such an explicit assumption on the structure
of the signal may not be appropriate in more complicated
applications. A more generic approach would “invert” C
(discrete integration in this example) to reconstruct the signal
given w. From the second row of Figure 9 we see that `0-
TV obtains a better unbiased estimation of the magnitude
of the derivative compared to `1-TV; accordingly, the signal
reconstructed by integration is more faithful using the `0-
style regularizatoin.

D. SR3 FOR MATRIX COMPLETION
Analogous to sparsity in compressed sensing, low-rank struc-
ture has been used to solve a variety of matrix completion
problems, including the famous Netflix Prize problem, as
well as in control, system identification, signal process-
ing [55], combinatorial optimization [12], [43], and seismic
data interpolation/denoising [3], [39].

We compare classic rank penalty approaches using the
nuclear norm (see e.g. [43]) to the SR3 approach on a
seismic interpolation example. Seismic data interpolation
is crucial for accurate inversion and imaging procedures
such as full-waveform inversion [52], reverse-time migration
[6] and multiple removal methods [51]. Dense acquisition
is prohibitively expensive in these applications, motivating
reduction in seismic measurements. On the other hand, using
subsampled sources and receivers without interpolation gives
unwanted imaging artifacts. The main goal is to simultane-
ously sample and compress a signal using optimization to re-
place dense acquisition, thus enabling a range of applications
in seismic data processing at a fraction of the cost.
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FIGURE 10: Interpolating a frequency slice from the Gulf
of Suez dataset. Clockwise we see subsampled data in the
source-receiver domain; transformation of the data to the
midpont-offset domain, interpolation, and inverse transform
back to the source/receiver domain.

Problem setup. We use a real seismic line from the Gulf of
Suez. The signal is stored in a 401 × 401 complex matrix,
indexed by source/receiver, see the left plot of Fig. 10. Fully
sampled seismic data has a fast decay of singular values,
while sub-sampling breaks this decay [3]. A convex formula-
tion for matrix completion with nuclear norm is given by [43]

min
X

1

2
‖A(X)−D‖2F + λR(σ(X)) (26)

whereAmaps X to data D, andR(·) = ‖·‖1 penalizes rank.
The SR3 model relaxes (28) to obtain the formulation

min
X,W

1

2
‖A(X)−D‖2F +λR(σ(W)) +

κ

2
‖W−X‖2F . (27)

To find X(W), the minimizer of (29) with respect to X,
we solve a least squares problem. The W update requires
thresholding the singular values of X(W).

We compare the results from four formulations, SR3 `0,
SR3 `1, classic `0 and classic `1, i.e. the equations

min
X

1

2
‖A(X)−D‖2F + λR(σ(X)) (28)

and

min
X,W

1

2
‖A(X)−D‖2F +λR(σ(W))+

κ

2
‖W−X‖2F , (29)

where R can be either `1 or `0. To generate figures from
SR3 solutions, we look at the signal matrix X rather than
the auxiliary matrix W, since we want the interpolated result
rather than a support estimate, as in the compressive sensing
examples.

In Figure 10, 85% of the data is missing. We arrange the
frequency slice into a 401 × 401 matrix, and then transform
the data into the midpoint-offset domain following [3], with
m = 1

2 (s + r) and h = 1
2 (s − r), increasing the dimension

to 401 × 801. We then solve (29) to interpolate the slice,
and compare with the original to get a signal-to-noise ratio
(SNR) of 9.7 (last panel in Fig. (10)). The SNR obtained by
solving (28) is 9.2.

Parameter selection. We choose κ = 0.5 for all the exper-
iments and do a cross validation for λ. When R = `1, we
range λ from 5 to 8; when R = `0, we range λ from 200 to
400.
Results. Results are shown in Figures 11 and 12. The relative
quality of the images is hard to compare with the naked
eye, so we compute the Signal to Noise Ratio (SNR) with
respect to the original (fully sampled) data to present a
comparison. SR3 fits original data better than the solution
of (28), obtaining a maximum SNR of 12.6, see Figure 11.

We also generate Pareto curves for the four approaches,
plotting achievable misfit on the observed data against the
ranks of the solutions. Pareto curves for `0 formulations
lie below those of `1 formulations, i.e. using the 0-norm
allows better data fitting for a given rank, and equivalently
a lower rank at a particular error level, see Figure 12. The
Pareto curves obtained using the SR3 approach are lower
still, through the relaxation.

E. SR3 FOR GROUP SPARSITY
Group sparsity is a composite regularizer used in multi-
task learning with under-determined tasks. Consider a set of
under-determined linear systems,

bi = Aixi + σεi, i = 1, . . . , k,

where Ai ∈ Rmi×n and mi < n. If we assume a priori that
some of these systems might share the same solution vector,
we can formulate the problem of recovering the xi as

min
xi

1

2

k∑
i=1

‖Aixi − bi‖22 + λ

k−1∑
i=1

k∑
j=i+1

‖xi − xj‖2

where the `2 norm promotes sparsity of the differences xi −
xj (or, equivalently, encourages redundancy in the xi). To
write the objective in a compact way, set

x =

x1

...
xk

 , b =

b1...
bk

 , A =

A1

. . .
Ak

 .
We can then re-write the optimization problem as

min
x

1

2
‖Ax− b‖22 + λ

k−1∑
i=1

k∑
j=i+1

‖Dijx‖2 ,

where Dijx gives the pairwise differences between xi and
xj . There is no simple primal algorithm for this objective, as
‖ · ‖2 is not smooth and there is no efficient prox operation
for the composition of ‖ · ‖2 with the mapping D.

Applying the SR3 approach, we introduce the variables
wij to approximate Dijx and obtain

min
x,w

1

2
‖Ax− b‖22 + λ

k−1∑
i=1

k∑
j=i+1

‖wij‖2

+
κ

2

k−1∑
i=1

k∑
j=i+1

‖wij −Dijx‖22 .
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(a) SR3 (29), R = ‖ · ‖0, SNR: 12.6489 (b) SR3 (29), R = ‖ · ‖1, SNR: 12.3508

(c) (28), R = ‖ · ‖0, SNR: 12.1929 (d) (28), R = ‖ · ‖1, 12.05720 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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FIGURE 11: Result comparison SR3 vs. classic low rank regression. In each subplot, we show the recovered signal matrix (left)
and the difference between recovered the true signal (right). The corresponding SNR is provided. (a), (b) plot the the results of
SR3 with `0 and `1 regularizers. (c), (d) plot the results of classic formulation with `0 and `1 regularizers.
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FIGURE 12: Pareto frontiers (best fit achievable for each
rank) for (28) with R = `1, R = `0, and for corresponding
SR3 formulations (29), describing the best fits of observed
values achievable for a given rank (obtained across regular-
izers for the four formulations). `0 formulations are more
efficient than those with `1, and SR3 formulations (29) are
more efficient classic formulations (28).

Problem setup. We set up a synthetic problem with n = 200,
mi = 150, and k = 7. The Ai are random Gaussian matrices
and we group the true underlying signal as follows:

x1 = x2, x3 = x4, x5 = x6 = x7

where the generators are sampled form a Gaussian distribu-
tion. We set the noise level to σ = 0.1.
Parameter selection. We select optimization parameters to
be λ = 10 and κ = 1.
Results. The pairwise distance of the result is shown in
Figure 13. The groups have been successfully recovered. If
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FIGURE 13: Pairwise distance between all decision variables
of different tasks obtained by SR3.

we directly use the x from the SR3 solution, we obtain 47%
relative error. However, using the pattern discovered by w to
regroup the least square problems, namely combine A1,A2

and b1, b2 to solve for the first group of variables, x1 = x2,
and so on, we improve the result significantly to 1% relative
error (which is essentially optimal given the noise).

IV. DISCUSSION AND OUTLOOK
Sparsity promoting regularization of regression problems
continues to play a critical role in obtaining actionable and in-
terpretable models from data. Further, the robustness, compu-
tational efficiency, and generalizability of such algorithms is
required for them to have the potential for broad applicability
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across the data sciences. The SR3 algorithm developed here
satisfies all of these important criteria and provides a broadly
applicable, simple architecture that is better than state-of-
the-art methods for compressed sensing, matrix completion,
LASSO, TV regularization, and group sparsity. Critical to
its success is the relaxation that splits sparsity and accuracy
requirements.

The SR3 approach introduces an additional relaxation
parameter. In the empirical results presented here, we did not
vary κ significantly, showing that for many problems, choos-
ing κ ≈ 1 can improve over the state of the art. The presence
of κ affects the regularization parameter λ, which must be
tuned even if a good λ is known for the original formulation.
Significant improvements can be achieved by choices of the
pair (κ, λ); we recommend using cross-validation, and leave
automatic strategies for parameter tuning to future work.

The success of the relaxed formulation suggests broader
applicability of SR3. This paper focused on regularized re-
gression, but the method applies more generally to inference
over any type of estimator with general statistical assump-
tions. In particular, we can consider the general optimization
problem associated with nonlinear functions, such as the
training of neural networks, optimizing over a set of super-
vised input-output responses that are given by a nonlinear
function f(·) with constraints. The relaxed formulation of (2)
generalizes to

min
x,w

f(A,x, b) + λR(w) +
κ

2
‖Cx−w‖2. (30)

Accurate and sparse solutions for such neural network archi-
tectures can be more readily generalizable, analogous with
how SR3 helps to achieve robust variable selection in sparse
linear models. The application to neural networks is beyond
the scope of the current manuscript, but the architecture
proposed has great potential for broader applicability.
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APPENDIX.
We review necessary preliminaries from the optimization
literature, and then present a series of theoretical results
that explain some of the properties of SR3 solutions and
characterize convergence of the proposed algorithms.

MATHEMATICAL PRELIMINARIES
Before analyzing SR3, we give some basic results from the
non-smooth optimization literature.

SUBDIFFERENTIAL AND OPTIMALITY
In this paper, we work with nonsmooth functions, both
convex and nonconvex. Given a convex nonsmooth function
f : Rn → R and a point x̄with f(x̄) finite, the subdifferential
of f at x̄, denoted ∂f(x̄), is the set of all vectors v satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉 ∀ x.

The classic necessary stationarity condition 0 ∈ ∂f(x̄)
implies f(x) ≥ f(x̄) for all x, i.e. global optimality. The
definition of subdifferential must be amended for the general
nonconvex case. Given an arbitrary function f : Rn → R and
a point x̄ with f(x̄) finite, the Fréchet subdifferential of f at
x̄, denoted ∂̂f(x̄), is the set of all vectors v satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) as x→ x̄.

Thus the inclusion v ∈ ∂̂f(x̄) holds precisely when the affine
function x 7→ f(x̄) + 〈v, x− x̄〉 underestimates f up to first-
order near x̄. In general, the limit of Fréchet subgradients
vi ∈ ∂̂f(xi), along a sequence xi → x̄, may not be a
Fréchet subgradient at the limiting point x̄. Therefore, one
formally enlarges the Fréchet subdifferential and defines the
limiting subdifferential of f at x̄, denoted ∂f(x̄), to consist
of all vectors v for which there exist sequences xi and vi,
satisfying vi ∈ ∂f(xi) and (xi, f(xi), vi) → (x̄, f(x̄), v).
In this general setting, the condition 0 ∈ ∂f(x̄) is necessary
but not sufficient. However, stationary points are the best we
can hope to find using iterative methods, and distance to sta-
tionarity serves as a way to detect convergence and analyze
algorithms. In particular, we design and analyze algorithms
that find the stationary points of (1) and (5), which are defined
below, for both convex and nonconvex regularizers R(·).
Definition 1 (Stationarity). We call x̂ the stationary point of
(1) if,

0 ∈ A>(Ax̂− b) + λC>∂R(x̂).

And (x̂, ŵ) the stationary point of (5) if,

0 = A>(Ax̂− b) + κC>(Cx̂− ŵ),

0 ∈ λ∂R(ŵ) + κ(ŵ −Cx̂).

MOREAU ENVOLOPE AND PROX OPERATORS
For any function f and real η > 0, the Moreau envelope and
the proximal mapping are defined by

fη(x) := inf
z

{
f(z) + 1

2η‖z − x‖2
}
, (31)

proxηf (x) := argmin
z

{
ηf(z) + 1

2‖z − x‖2
}
, (32)

respectively.
The Moreau envelope has a smoothing effect on convex

functions, characterized by the following theorem. Note that
a proper function f satisfies that f > −∞ and it takes on a
value other than +∞ for some x. A closed function satisfies
that {x : f(x) ≤ α} is a closed set for each α ∈ R.
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FIGURE 14: Envelope functions indexed by the parameter η,
for f = ‖ · ‖0. In contrast to the convex case, here all fη are
nonsmooth and nonconvex.

Theorem 5 (Regularization properties of the envelope). Let
f : Rn → R be a proper closed convex function. Then fη is
convex and C1-smooth with

∇fη(x) = 1
η (x− proxηf (x)) and Lip(∇fη) ≤ 1

η .

If in addition f is L-Lipschitz, then the envelope fη(·) is L-
Lipschitz and satisfies

0 ≤ f(x)− fη(x) ≤ L2η

2
for all x ∈ Rn. (33)

Proof. See Theorem 2.26 of [44].

However, when f is not convex, fη may no longer be
smooth as we show in Figure 14 where we use `0 as an
example.

COMMON PROX OPERATORS

The prox operator is useful when designing algorithms that
handle non-smooth and non-convex functions. Its calcula-
tion is often straightforward when the function f decouples
element-wise. To illustrate the idea, we derive proximal
mappings for `1, `0, `22, and `2. Many more operators can be
found e.g. in [22].

• f(·) = ‖ · ‖1. The `1 norm is a convex nonsmooth
penalty often used to promote sparse solutions in regres-
sion problems. We include a derivation of the proximity
operator for this problem and the remaining operators
have similar derivations.

Lemma 1 (`1). The prox operator of `1 is an element-
wise soft-thresholding action on the given vector.

x = proxηf (y) = argmin
x

1

2
‖x− y‖2 + η‖x‖1 ⇒

xi =


yi − η, yi > η

0, |yi| ≤ η
yi + η, yi < −η

.

(34)

Proof. Note that the optimization problem may be writ-
ten as

argmin
x

1

2
‖x− y‖2 + η‖x‖1

= argmin
x

1

2

n∑
i=1

(xi − yi)2 + η|xi| ,
(35)

i.e. the problem decouples over the elements of y. For
each i, the optimization problem has the subdifferential

∂xi

(
1

2
(xi − yi)2 + η|xi|

)

=


xi − yi + η, xi > 0

xi − yi + {z : |z| ≤ η}, xi = 0

xi − yi − η, xi < 0

.

(36)

After checking the possible stationary points given this
formula for the subdifferential, it is simple to derive
(34).

• f(·) = ‖ · ‖0. The `0 penalty directly controls the
number of non-zeros in the vector instead of penalizing
the magnitude of elements as `1 does. However, it is
non-convex and in practice regression formulations with
`0 regularization can be trapped in local minima instead
of finding the true support.
Lemma 2 (`0). The prox operator of `0 is simple,
element-wise hard-thresholding:

x = proxηf (y) = argmin
x

1

2
‖x− y‖2 + η‖x‖0 ⇒

xi =

{
yi, |yi| >

√
2η

0, |yi| ≤
√

2η
.

(37)

Proof. Analogous to the `1, the prox problem for `0 can
be decoupled across coordinates:

1

2
‖x−y‖2+η‖x‖0 = argmin

x

1

2

n∑
i=1

(xi−yi)2+η1{xi=0} .

From this formula, it is clear that the only possible
solutions for each coordinate are xi = 0 or xi = yi.
The formula (37) follows from checking the conditions
for these cases.

• f(·) = 1
2‖ · ‖2. The `22 penalty can be used as a smooth

and convex penalty which biases towards zero. When
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combined with linear regression, it is commonly known
as ridge regression.
Lemma 3 (`22). The prox of `22 is scaling.

x = proxηf (y) = argmin
x

1

2
‖x−y‖2+

η

2
‖x‖2 =

1

1 + η
y.

Proof. The proof follows directly from calculus.

• f(·) = ‖ · ‖. The `2 norm adds a group sparsity prior,
i.e. the vector x is biased toward being the zero vector.
Often, this penalty is applied to each column of a matrix
of variables. Unlike the prox operators above, ‖ · ‖
(by design) does not decouple into scalar problems.
Fortunately, a closed form solution is easy to obtain.
Lemma 4.

x = proxηf (y) = argmin
x

1

2
‖x− y‖2 + η‖x‖ ⇒

x =

{‖y‖−η
‖y‖ y, ‖y‖ > η

0, ‖y‖ ≤ η
.

Proof. Observe that for any fixed value of ‖x‖ the
objective

1

2
‖x− y‖2 + η‖x‖ (38)

is minimized by taking x in the direction of y. This
reduces the problem to finding the optimal value of
‖x‖, for which the same reasoning as the `1 penalty
applies.

PROXIMAL GRADIENT DESCENT

Algorithm 5 Proximal gradient descent

1: Input: x0, η
2: Initialize: k = 0
3: while not converged do
4: k← k + 1
5: xk ← proxηg(xk−1 − η∇f(xk−1))

6: Output: xk

Consider an objective of the form p(x) = f(x) + g(x).
Given a step size t, the proximal gradient descent algorithm
is as defined in Algorithm 3 [22]. This algorithm has been
studied extensively. Among other results, we have

Theorem 6 (Proximal Gradient Descent). Assume p = f+g
and both p and g are closed convex functions. Let p∗ denote
the optimal function value and x∗ denote the optimal solu-
tion.

• If ∇f is β Lipschitz continuous, then, setting the step
size as 1/β, the iterates generated by proximal gradient
descent satisfy

p(xk)− p∗ ≤ β‖x0 − x∗‖2
2(k + 1)

.

• Furthermore, if p is also α strongly convex, we have,

‖xk − x∗‖2 ≤
(

1− α

β

)k
‖x0 − x∗‖2.

These results are well known; see e.g. [8], [22], [41] and
the tutorial section 4.4 of [2].

EQUIVALENCE OF ALGORITHMS 1 AND 2.
In this section we show that Algorithm 1 is equivalent with
Algorithm 2. The first lends itself to a straightforward analy-
sis, while the second is far easier to implement.

Variable projection is the key to compute the gradient of
the smooth part of v in (3). Here we denote,

fs(x,w) =
1

2
‖Ax− b‖2 +

κ

2
‖Cx−w‖2,

vs(w) = min
x
fs(x,w) = fs(x(w),w),

where x(w) = argminx fs(x,w) We have the relation

v(w) = vs(w) + λR(w).

Taking the derivative, we get

∇vs(w) = ∇wfs(x(w),w) + ∇xfs ·
∂x

∂w

∣∣∣∣
x=x(w)

The second term vanishes because fs(x(w),w) is optimal
with respect to x, and we have

∇vs(w) = κ(w −Cx(w)).

From Theorem 1, ∇vs is Lipchitz continuous with constant
κ. Then the proximal gradient step can be written as,

xk+1 = argmin
x

fs(x,w
k)

wk+1 = proxηλR(wk − ηκ(wk −Cxk+1))

When we choose η = 1/κ, the second equation becomes,

wk+1 = proxλ/κR(Cxk+1)

which precisely matches Algorithm 2.

THEORETICAL RESULTS
In the main text, it is demonstrated that SR3 (5) outper-
forms the standard regression problem (1), achieving faster
convergence and obtaining higher quality solutions. Here,
we develop some theory to explain the performance of SR3
from the perspective of the relaxed coordinates,w. We obtain
an explicit formula for the SR3 problem in w alone and
then analyze the spectral properties of that new problem,
demonstrating that the conditioning of the w problem is
greatly improved over that of the original problem. We also
obtain a quantitative measure of the distance between the
solutions of the original problem and the SR3 relaxation.
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SPECTRAL PROPERTIES OF Fκ

1) Proof of Theorem 1
The first property can be verified by direct calculation. We
have

F>κFκw − F>κ gκ =(κI− κ2CH−1κ C>)w − κCH−1κ A>b

=κH−1κ [(Hκ − κI)w −A>b]

=κH−1κ (A>Aw −A>b)

so that F>κFκw − F>κ gκ = 0 ⇐⇒ A>Aw + A>b = 0.
By simple algebra, we have,

F>κFκ = κI− κ2CH−1κ C>

σi(F
>
κFκ) = κ− κ2σn−i+1(CH−1κ C>).

(39)

Since CH−1κ C> and F>κFκ are positive semi-definite matri-
ces, we have 0 � F>κFκ � κI. Denote the SVD for C by
C = UcΣcV

>
c . When n ≥ d and C is full rank, we know

Σc is invertible and Vc is orthogonal. Then

CH−1κ C> = UcΣcV
>
c (A>A + κVcΣ

2
cV
>
c )−1VcΣcU

>
c

= Uc(Σ
−1
c V>c A>AVcΣ

−1
c + κI)−1U>c

This gives a lower bound of the spectrum of CH−1κ C>,

σmin(Σ−1c V>c A>AVcΣ
−1
c ) ≥ σmin(A>A)/σmax(C>C)

⇒ σmax(CH−1κ C>) ≤ 1/(σmin(A>A)/σmax(C>C) + κ)

Then we obtain the conclusion,

σmin(F>κFκ) ≥ κ− κ2

σmin(A>A)/σmax(C>C) + κ

=
σmin(A>A)/σmax(C>C)

1 + σmin(A>A)/(κσmax(C>C))
.

When C = I, we have that

F>κFκ = κ[I− κ(A>A + κI)−1]

= A>(I + AA>/κ)−1A

Assume A ∈ Rm×n has the singular value decomposition
(SVD) A = UΣV>, where U ∈ Rm×m, Σ ∈ Rm×m, and
V ∈ Rm×m. We have

F>κFκ = VΣ>(I + ΣΣ>/κ)−1ΣV>.

Let Σ̂ ∈ Rl×l denote the reduced diagonal part of Σ, i.e.
the top-left l × l submatrix of Σ with l = min(m,n). When
m ≥ n, we have

Σ =

[
Σ̂
0

]
, F>κFκ = VΣ̂>(I + Σ̂2/κ)−1Σ̂V> (40)

And when m < n,

Σ =
[
Σ̂ 0

]
, F>κFκ = V

[
Σ̂>(I + Σ̂2/κ)−1Σ̂ 0

0 0

]
V>

(41)
(8) and (9) follow immediately.

Note that the function
x√

1 + x2/a

is an increasing function of x when x, a > 0. Therefore, by
(9), we have

σmax(Fκ) =
σmax(A)√

1 + σmax(A)2/κ
and

σmin(Fκ) =
σmin(A)√

1 + σmin(A)2/κ
.

(13) follows by the definition of the condition number.

2) Proof of Theorem 2.
For the iterates of the proximal gradient method, we have

xk+1 = argmin
x

1

2
‖x− (xk − η∇f(xk))‖2 + ηg(x)

and from the first order optimality condition we have

0 ∈ xk+1 − xk + η∇f(xk) + η∂g(xk+1)

⇒ 1

η
(xk − xk+1) +∇f(xk+1)−∇f(xk)

∈ ∇f(xk+1) + ∂g(xk+1)

⇒ (‖A‖22I−A>A)(xk − xk+1) ∈ ∂p(xk+1) ,

which establishes the first statement. Next, consider the fol-
lowing inequality

p(xk+1) =
1

2
‖Axk+1 − b‖2 + λR(xk+1)

=
1

2
‖Axk − b+ A(xk+1 − xk)‖2 + λR(xk+1)

=
1

2
‖Axk − b‖2 + λR(xk+1)

+
〈
A>(Axk − b),xk+1 − xk

〉
+

1

2
‖A(xk+1 − xk)‖2

≤ 1

2
‖Axk − b‖2 + λR(xk)− ‖A‖

2
2

2
‖xk+1 − xk‖2

+
1

2
‖A(xk+1 − xk)‖2 ,

which implies the inequality〈
xk − xk+1, (‖A‖22I−A>A)(xk − xk+1)

〉
≤ p(xk)− p(xk+1)

⇒ ‖A‖22‖xk+1 − xk‖2 ≤ p(xk)− p(xk+1).

Setting vk+1 = (‖A‖22I−A>A)(xk − xk+1), we have

‖vk+1‖2 ≤ ‖A‖42‖xk+1−xk‖2 ≤ ‖A‖22(p(xk)−p(xk+1)) .

After we add up and simplify, we obtain

1

N

N−1∑
k=0

‖vk+1‖2 ≤
‖A‖22
N

(p(x0)− p(xN ))

≤ ‖A‖
2
2

N
(p(x0)− p∗) ,

which is the desired convergence result.
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3) Proof of Theorem 3.
The result is immediate from combining Theorem 2 and
Theorem 1.

4) Proof of Corollary 2.
The result is immediate from combining Theorem 2 and
Corollary 1.

CHARACTERIZING OPTIMAL SOLUTIONS OF SR3
In this section, we quantify the relation between the solution
of (1) and (5) when C = I. In this analysis, we fix κ as a
constant and set C = I.

Lemma 5 (Optimality conditions for (1) and (5)). Define the
sets

S1(x, λ1) = {A>Ax−A>b+ λ1v1 : v1 ∈ ∂R(x)}
S2(w, λ2) = {κH−1κ (A>Aw −A>b) + λ2v2 : v2 ∈ ∂R(w)} ,
where Hκ = A>A + κI, as above. These sets contain the
subgradients of (1) and (5). If we assume x̂ and ŵ are the
(stationary) solutions of (1) and (5), namely

0 ∈ S1(x̂, λ1), 0 ∈ S2(ŵ, λ2) ,

then

[I− (λ1/λ2)κH−1κ ](A>Aŵ −A>b) ∈ S1(ŵ, λ1),

[κH−1κ − (λ2/λ1)I](A>Ax̂−A>b) ∈ S2(x̂, λ2).

Proof. As x̂ and ŵ are the (stationary) solutions of (1) and
(5), we have

∃v1 ∈ ∂R(x̂), λ1v1 = −(A>Ax̂−A>b),

∃v2 ∈ ∂R(ŵ), λ2v2 = −κH−1κ (A>Aŵ −A>b).

Then,

A>Aŵ −A>b+ λ1v2 ∈ S1(ŵ, λ1)

⇒ [I− (λ1/λ2)κH−1κ ](A>Aŵ −A>b) ∈ S1(ŵ, λ1),

κH−1κ (A>Ax̂−A>b) + λ2v1 ∈ S2(x̂, λ2)

⇒ [κH−1κ − (λ2/λ1)I](A>Ax̂−A>b) ∈ S2(x̂, λ2).

5) Proof of Theorem 4
Using the definitions of Lemma 5, we have

dist(0,S1(ŵ, λ1))

≤ 1

τ̂
‖(τ̂I− κH−1κ )(A>Aŵ −A>b)‖

=
1

τ̂
‖τ̂I− κH−1κ ‖2‖A>Aŵ −A>b‖

=
1

τ̂
‖τ̂1− κσ(H−1κ )‖∞‖A>Aŵ −A>b‖

=
σmax(Hκ)− σmin(Hκ)

σmax(Hκ) + σmin(Hκ)
‖A>Aŵ −A>b‖

=
σmax(A)2 − σmin(A)2

σmax(A)2 + σmin(A)2 + 2κ
‖A>Aŵ −A>b‖ .

If x̂ = ŵ, then r = A>Aŵ −A>b = A>Ax̂ −A>b
is in the null space of τI − κH−1κ , where τ = λ2/λ1. This
establishes a connection between λ1 and λ2. For instance, we
have the following result. In the case that A has orthogonal
rows or columns, theorem 4 provides some explicit bounds
on the distance between these solutions.

Corollary 3. If A>A = I, then dist(0,S1(ŵ, λ1)) = 0,
i.e. ŵ is the stationary point of (1). If AA> = I, then
dist(0,S1(ŵ, λ1)) ≤ 1/(1 + 2κ).

Proof. The formula for Hκ simplifies under these assump-
tions. When A>A = I, we have Hκ = (1 + κ)I and
σmax(Hκ) = σmin(Hκ) = 1 + κ. When AA> = I, we
have σmax(Hκ) = 1 + κ and σmin(Hκ) = κ. Theorem 4
then implies the result.

IMPLEMENTATION OF `Q PROXIMAL OPERATOR.
Here we summarize our implementation. The first and second
derivatives are given by

f ′α,p(x; z) =
1

α
(x− |z|) + pxp−1,

f ′′α,p(x; z) =
1

α
+ p(p− 1)xp−2.

(42)

The point x̃ = p−2
√
−1/(αp(p− 1)) is the only inflection

point of fα,p, with f ′′α,p(x) < 0 for 0 ≤ x < x̃, and
f ′′α,p(x; z) > 0 when x > x̃.
• If f ′α,p(x̃; z) ≥ 0, we have f ′α,p(x; z) ≥ 0, for all x ≥ 0.

Then argminx≥0 fα,p(x; z) = 0.
• If f ′α,p(x̃; z) < 0, one local min x̄ ∈ (x̃, |z|) exists,

and we can use Newton’s method to find it. Then we
compare the values at 0 and x̄, obtaining

argmin
x≥0

fα,p(x; z) =

{
0, fα,p(0; z) ≤ fα,p(x̄; z)

x̄, fα,p(0; z) > fα,p(x̄; z)
.
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