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Hybrid systems are traditionally difficult to identify
and analyse using classical dynamical systems theory.
Moreover, recently developed model identification
methodologies largely focus on identifying a single
set of governing equations solely from measurement
data. In this article, we develop a new methodology,
Hybrid-Sparse Identification of Nonlinear Dynamics,
which identifies separate nonlinear dynamical
regimes, employs information theory to manage
uncertainty and characterizes switching behaviour.
Specifically, we use the nonlinear geometry of
data collected from a complex system to construct
a set of coordinates based on measurement data
and augmented variables. Clustering the data in
these measurement-based coordinates enables the
identification of nonlinear hybrid systems. This
methodology broadly empowers nonlinear system
identification without constraining the data locally
in time and has direct connections to hybrid systems
theory. We demonstrate the success of this method
on numerical examples including a mass–spring
hopping model and an infectious disease model.
Characterizing complex systems that switch between
dynamic behaviours is integral to overcoming modern
challenges such as eradication of infectious diseases,
the design of efficient legged robots and the protection
of cyber infrastructures.
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1. Introduction
The high-fidelity characterization of complex systems is of paramount importance to manage
modern infrastructure and improve lives around the world. However, when a system exhibits
nonlinear behaviour and switches between dynamical regimes, as is the case for many large-
scale engineered and human systems, model identification is a significant challenge. These
hybrid systems are found in a diverse set of applications including epidemiology [1], legged
locomotion [2], cascading failures on the electrical grid [3] and security for cyber infrastructure [4].
Typically, model selection procedures rely on physical principles and expert intuition to postulate
a small set of candidate models; information theoretic approaches evaluate the goodness of fit to
data among these models and penalizing over-fitting [5–9].

More candidate models can be considered using advanced data-driven methodologies such
as support vector machines [10,11], Bayesian variable selection [12,13], genetic algorithms
[14–16] and information theoretic techniques [17]. In 2016, Wang et al. [18] provided a nice
review of data-driven identification of complex systems. Our contribution, sparse identification
of nonlinear dynamics (SINDy) [19], sparsely selects models from a combinatorially large
library of possible nonlinear dynamical systems, decreases the computational costs of model
fitting and evaluations [20] and generalizes to a wide variety of physical phenomena [21,22].
However, neither standard nor advanced model selection procedures are formulated to
identify hybrid systems. In this article, we describe a new method, called Hybrid-Sparse
Identification of Nonlinear Dynamics (Hybrid-SINDy), which identifies hybrid dynamical
systems, characterizes switching behaviours and uses information theory to manage model
selection uncertainty.

Predecessors of current data-driven model-selection techniques, called system identification,
were developed by the controls community to discover linear dynamical systems directly from
data [23]. They made substantial advances in the model identification and control of aerospace
structures [24,25], and these techniques evolved into a standard set of engineering control
tools [26]. One method to improve the prediction of linear input–output models was to augment
present measurements with past measurements, i.e. delay embeddings [24]. Delay embeddings
and their connections to Takens’ embedding theorem have enabled equation-free techniques that
distinguish chaotic attractors from measurement error in time-series [27], contribute to nonlinear
forecasting [28,29] and identify causal relationships among subsystems solely from time-series
data [30].

Augmenting measurements with nonlinear transformations has also enabled identification
of nonlinear dynamical systems from data. As early as 1987, nonlinear feature augmentation
was used to construct equations and characterize the dynamical system [31], with extensions
to control in 1991 [32]. Later, ordinary differential equations were formulated into a dictionary
of observables, through linear discretization of the derivatives, and convergence and error
of discretization schemes of varying order were studied [33]. Developed more recently,
dynamic mode decomposition [34–36] has been connected to nonlinear dynamical systems
via the Koopman operator [35,37,38], and extended to control [39]. More sophisticated data
transformations, originating in the harmonic analysis community, are also being used for
identifying nonlinear dynamical systems [40,41]. Similarly, SINDy exploits these nonlinear
transformations by building a library of nonlinear dynamic terms constructed using data. This
library is systematically refined to find a parsimonious dynamical model that represents the data
with as few nonlinear terms as possible [19].

Methods like SINDy are not currently designed for hybrid systems because they assume that
all measurement data in time are collected from a dynamical system with a consistent set of
equations. In hybrid systems, the equations may change suddenly in time and one would like to
identify the underlying equations without knowledge of the switching points. One approach is to
construct the models locally in time by restricting the input data to a short time window. Statistical
models, such as the auto-regressive moving average (ARMA) and its nonlinear counterpart
(NARMA), constrain the time series to windows of data near the current time [42]. This technique
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has been extended to analyse non-autonomous dynamical systems, including hybrid systems,
with Koopman operator theory [43].

Other approaches for nonlinear systems include partitioning the time- or spatial-domain
and constructing local models using Galerkin’s method for model reduction, proper orthogonal
decomposition or dynamic mode decomposition to construct reduced-order models [44–47].
Cluster-based approaches have also been used to build probabilistic, reduced-order models of
complex fluid flow [48]. A recent method used a global optimum search to optimize the number
of clusters and generated local reduced-order models using proper orthogonal decomposition
for computational speed up of simulations of hydraulic fracturing [49]. Subsequent work
incorporated dynamic mode decomposition with control to design an approximate model
with feedback control on local temporal clusters [50], and then extended to handle spatial
heterogeneity using an ensemble Kalman filter [51]. Reduced-order models for simulating
fracture propagation have also been developed using SINDy [52]. Alternatively, recent methods
for recurring switching between dynamical systems use a Bayesian framework to infer how the
state of the system, modelled as linear partitions, depends on multiple previous time steps [53].
This method enables reconstruction of state space in terms of linear generated states and provides
location-dependent behavioural states.

While restricting data locally in time may avoid erroneous model selection at the switching
point, this method creates a new problem: there may not be enough data within a single window
for data-driven model selection to robustly select and validate nonlinear models. For some sparse
regression problems, only a small amount of data is required to accurately recover the signal.
Schaeffer et al. recently demonstrated dynamical system recovery in [54,55], using short bursts
from random initial conditions and a Legendre polynomial basis. They take advantage of recovery
guarantees for basis pursuit when library features are relatively uncorrelated and measurement
noise is limited [56]. However, the recovery guarantees fail for short time series from the mass–
spring hopper system analysed in this work [57]. Furthermore, unlike the systems analysed
in [54,55], one cannot collect randomly sampled initial conditions from a hybrid dynamical
system because the data would bridge multiple dynamic regimes. Another standard sparsity
promoting technique, LASSO, has been recently shown to make mistakes early in the sparse
recovery pathway [58], whereas the least squares with thresholding procedure advocated here
converges locally to the solution of a non-convex, �0-penalized regression problem and such
non-convex methods have been observed to outperform convex variants in sparse variable
selection [59,60]. Even when low-data-limit recovery guarantees exist for an appropriate sparsity
promoting method, more data are necessary to validate the recovered system. Most sparse-
regression methods have a tuning parameter which generates a collection of models of varying
sparsity, therefore a significant amount of local validation data is required to differentiate between
these models.

For nonlinear-model selection and validation to work in hybrid-systems, one needs a method
to gather sufficient data from a consistent underlying model. Simplex-projection, which is used
in cross convergent mapping, employs delay embeddings to find geometrically similar data for
prediction [27]. Recently, Yair et al. showed that data from dynamically similar systems could be
grouped together in a label-free way by measuring geometric closeness in the data using a kernel
method [61]. Here, we show that nonlinear model selection can succeed for hybrid dynamical
systems when the data are examined within a pre-selected coordinate system that takes advantage
of the intrinsic geometry of the data.

We present a generalization of SINDy, called Hybrid-SINDy, that allows for the identification
of nonlinear hybrid dynamical systems. We use modern machine-learning methodologies to
identify clusters within the measurement data augmented with features extracted from the
measurements. Applying SINDy to these clusters generates a library of candidate nonlinear
models. We demonstrate that this model library contains the different dynamical regimes
of a hybrid system and use out-of-sample validation with information theory to identify
switching behaviour. We perform an analysis of the effects of noise and cluster size on model
recovery. Hybrid-SINDy is applied to two realistic applications including legged locomotion
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and epidemiology. These examples span two fundamental types of hybrid systems: time- and
state-dependent switching behaviours.

2. Background

(a) Hybrid systems
Hybrid systems are ubiquitious in biological, physical and engineering systems [1–4]. Here, we
consider hybrid models in which continuous-time vector fields describing the temporal evolution
of the system state change at discrete times, also called events. Specifically, we choose a framework
and definition for hybrid systems that is amenable to numerical simulations [62] and has been
extensively adapted and used for the study of models [2]. Note that these models are more
complicated to define, numerically simulate and analyse than classical dynamical systems with
smooth vector fields [62,63]. Despite these challenges, solutions of these hybrid models have an
intuitive interpretation: the solution is composed of piecewise continuous trajectories evolving
according to vector fields that may change discontinuously at events.

Consider the state space of a hybrid system as a union

V=
⋃
α∈I

Vα , (2.1)

where Vα is a connected open set in R
n called a chart and I is a finite index. Describing the state

of the system requires an index α and a point in Vα , which we denote as xα . We assume that
the state within each patch evolves according to the classic description of a dynamical system
ẋα(t)= fα(xα(t)), where fα(xα) represents the governing equations of the system for chart Vα .
Transition maps Tα apply a change of states to boundary points within the chart; see [2] for a
more rigorous definition of Tα . In this work, we consider hybrid systems where the transition
between charts links the final state of the system on one chart xαi to the initial condition on
another xαj where both xαi , xαj ∈R

n. Constructing the global evolution of the system across patches
requires concatenating a set of smooth trajectories separated by a series of discrete events in
time τ1, τ2, . . . , τo. These discrete events can be triggered by either the state of the system τi(x)
or external events in time τi(t). In this article, we analyse hybrid systems representing both state-
and time-dependent events. For a broader and more in-depth discussion on hybrid systems, we
refer the reader to [2,62,63].

(b) Sparse identification of nonlinear dynamics
SINDy combines sparsity-promoting regression and nonlinear function libraries to identify a
nonlinear, dynamical system from time-series data [19]. We consider dynamical systems of the
form

d
dt

x(t)=
ζ∑

l=1

ξlfl(x(t)), (2.2)

where x(t) ∈R
n is a vector denoting the state of the system at time t and the sum of functions∑ζ

l=1 ξlfl describes how the state evolves in time. Importantly, we assume that ζ is small,
indicating the dynamics can be represented by a parsimonious set of basis functions. To identify
these unknown functions from known measurements x(t), we first construct a comprehensive
library of candidate functions Θ(x)= [f1(x) f2(x) . . . fp(x)]. We assume that the functions in (2.2)
are a subset of Θ(x). The measurements of the state variables are collected into a data matrix
X ∈R

(m×n), where each row is a measurement of the state vector xT(ti) for i ∈ [1, m]. The function
library is then evaluated for all measurements Θ(X) ∈R

(m×p). The corresponding derivative
time-series data, Ẋ ∈R

(m×n), are either directly measured or numerically calculated from X.
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To identify (2.2) from the data pair (Θ(X), Ẋ), we solve

Ẋ=Θ(X)Ξ , (2.3)

for the unknown coefficients Ξ ∈R
(p×n) and enforce a penalty on the number of non-zero

elements in Ξ . Note that the ith column of Ξ determines the governing equation for the ith state
variable. We expect each coefficient vector in Ξ to be sparse, such that only a small number of
elements are non-zero. We can find a sparse-coefficient vector using the Lagrangian minimization
problem

min
Ξ

1
2
‖Ẋ−Θ(X)Ξ‖22 + λ̂R(Ξ ). (2.4)

Here, R(Ξ ) is a regularizing, sparse-penalty function in terms of the coefficients, and λ̂ is a free
parameter that controls the magnitude of the sparsity penalty. Two commonly used formulations
include the LASSO with an l1 penalty R(Ξ )= ‖Ξ‖1 and the elastic-net with an l1 and l2 penalty
R(Ξ )= γ ‖Ξ‖1 + 1

2 (1− γ )‖Ξ‖22 which includes a second free parameter γ [64]. Less common, but
perhaps more natural, is the choice R(Ξ )= ‖Ξ‖0, where the �0 penalty is given by the number of
non-zero entries in Ξ . In this article, we use sequential least squares with hard thresholding to
solve (2.4) with the �0-type penalty, where any coefficients with values less than a threshold λ are
set to zero in each iteration [19].

Several innovations have followed the original formulation of SINDy [19]: the framework
has been generalized to study partial differential equations [22,65] and systems with rational
functional forms [21]; the impact of highly corrupted data has been analysed [66]; the robustness
of the algorithm to noise has been improved using integral and weak formulations [67,68]; and the
theory has been generalized to non-autonomous dynamical system with time-varying coefficients
using group sparsity norms [69,70]. Additional connections with information criteria [20], and
extensions to incorporate known constraints, for example, to enforce energy conservation in fluid
flow models [71], have also been explored. The connection with the Akaike information criteria
(AIC) is essential for this work, as it allows automated evaluation of SINDy-generated models.

(c) Model selection using Akaike information criteria
Information criteria provide a principled methodology to select between candidate models
for systems without a well-known set of governing equations derived from first principles.
Historically, experts heuristically constructed a small number, O(10), of models based on
their knowledge or intuition [72–77]. The number of candidate models is limited due to the
computational complexity required in fitting each model, validating on out-of-sample data and
comparing across models. New methods, including SINDy, identify data-supported models from
a much larger space of candidates without constructing and simulating every model [14,19,78,79].
The fundamental goal of model selection is to find a parsimonious model, which minimizes error
without adding unnecessary complexity through additional free parameters.

In 1951, Kullback and Leibler (K–L) proposed a method for quantifying information loss
or ‘divergence’ between reality and model predictions [80]. Akaike subsequently calculated
the relative information loss between models, by connecting K–L divergence theory with the
likelihood theory from statistics. He discovered a deceptively simple estimator for computing
the relative K–L divergence in terms of the maximized log-likelihood function for the data given
a model, L(x, μ̂), and the number of free parameters, k [5,6]. This relationship is now called AIC:

AIC= 2k− 2 ln(L(x, μ̂)), (2.5)

where the observations are x, and μ̂ is the best-fit parameter values for the model given the data.
The maximized log-likelihood calculation is closely related to the standard ordinary least squares
when the error is assumed to be independently, identically, and normally distributed (IIND). In
this special case, AIC= ρ ln(RSS/ρ)+ 2k, where RSS is the residual sum of the squares and ρ is
the number of observations. The RSS is expressed as RSS=∑ρ

i=1(yi − g(xi; μ))2 where yi are the
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observed outcomes, xi are the observed independent variables, and g is the candidate model [72].
Note that the RSS and the log-likelihood are closely connected.

In practice, the AIC requires a correction for finite sample sizes given by

AICc =AIC+ 2(k+ 1)(k+ 2)
(ρ − k− 2)

. (2.6)

AIC and AICc contain arbitrary constants that will depend on the sample size. These constants
cancel out when the minimum AICc across models is subtracted from the AICc for each candidate
model j, producing an interpretable model selection indicator called relative AICc, described by


 AICj
c =AICj

c −AICmin
c . The model with the most support will have a score of zero; 
 AICc

values allows us to rank the relative support of the other models. Anderson and Burnham in their
seminal work [72] prescribe a general rule of thumb when comparing relative support among
models: models with 
 AICc < 2 have substantial support, 4 < 
 AICc < 7 have some support,
and 
 AICc > 10 have little support. These thresholds directly correspond to a standard p-value
interpretation; we refer the reader to [72] for more details. In this article, we use 
 AICc = 3 as a
slightly larger threshold for support in this study. Following the development of AIC, many other
information criteria have been developed including Bayesian information criterion (BIC) [81],
cross-validation (CV) [82], deviance information criterion (DIC) [83] and minimum description
length (MDL) [84]. However, AIC remains a well known and ubiquitous tool; in this article, we
use relative AICc with correction for low data-sampling [20].

3. Hybrid-SINDy
Hybrid-SINDy is a procedure for augmenting the measurements, clustering the measurement
and augmented variables and selecting a model using SINDy for each cluster. We describe how to
validate these models and identify switching between models. An overview of the hybrid-SINDy
method is provided in figure 1 and algorithm 1.

(a) Collect time-series data from system
Discrete measurements of a dynamical system are collected and denoted by x(ti) ∈R

n; see
figure 1b for a time-series plot of the hopping robot illustrated in figure 1a. The measurement data
are arranged into the matrix X= [x(t1) x(t2) . . . x(tb)]T ∈R

(b×n), where superscript ‘T’ is the matrix
transpose. The time series may include trajectories from multiple initial conditions concatenated
together. The SINDy model is trained with a subset of the data XT ∈R

(m×n), where m is the number
of training samples. The corresponding data matrices for validation are denoted XV ∈R

v×n, where
v is the number validation samples, and b=m+ v.

(b) Clustering in measurement-based coordinates
Applications may require augmentation with variables such as the derivative, nonlinear
transformations [40,41], or time-delay coordinates [24,28]. In this article, we augment the state
measurements x(ti) with the time derivative of the measurements. The time derivative matrix is
constructed similar to the measurement matrix ẊT = [ẋ(t1) ẋ(t2) . . . ẋ(tm)]T ∈R

(m×n). The matrices
ẊT and ẊV are either directly measured or calculated from XT and XV , respectively. If all state
variables are accessible, such as in a numerical simulation, these data-driven coordinates directly
correspond to the phase space of a dynamical system. Note that this coordinate system does
not explicitly incorporate temporal information. Figure 1c illustrates the coordinates (x, ẋ) for the
hopping robot. A subset of [XT ẊT] can also be used as measurement-based coordinates. The set
of indices D are the measurements (columns), which are included in the analysis denoted by YT

and YV .
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(e) ( f )

(b)(a) (c)
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Figure 1. Overview of the hybrid-SINDy method, demonstrated using the Spring–Mass Hopper system. (a) The two dynamic
regimes of spring compression (blue) and flying (white). Time series for the position and velocity of the system sample both
regimes (b). Clustering the data in data-driven coordinates allows separation of the regimes, except at transition points near
x = 1 (c). Performing sparsemodel selection on each cluster produces a number of possiblemodels per cluster (d). (e) Validating
eachmodel within the cluster to form amodel library containing low AICc models across all clusters. In (f ), we plot the location
of the four most frequent models across clusters. These models correctly identify the compression, flying and transition points.
(Online version in colour.)

We then identify clusters of samples in the training and validation sets. For each sample (row)
in YT, we use the nearest neighbour algorithm knnsearch in MATLAB to find a cluster of K similar
measurements in YT. The training-set clusters, which are row indices of YT denoted Ci

T ∈R
K, are

found for each time point ti ∈ [t1, t2, . . . , tm]. The centroid of each cluster is computed within the
training set YT(Ci

T). We then identify K measurements from YV near the training centroid clusters.
Note that these clusters in the validation data, Ci

V ∈R
K, are essential to testing the out-of-sample

prediction of Hybrid-SINDy. Figure 2a,b illustrates the validation set in measurement-based
coordinates, with the centroids of three training clusters as black dots and the corresponding
validation clusters in teal, gold and purple dots.

By finding the corresponding validation clusters, we ensure that the out-of-sample data for
validating the model have the same local, nonlinear characteristics of the training data. To assess
the performance of the models, we also need to identify a validation time series from YV .
Starting with each data point in a validation cluster Ci

V , we collect q measurements from YV

that are temporally sequential, where q�m. These subsets of validation time series, Zi
V ∈R

q×n,
are defined for each data point and each cluster. The validation time series helps characterize the
out-of-sample performance of the model fit.
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Algorithm 1 . Hybrid-SINDy.

Input: The measurement data X ∈R
b×n, the set of measurement variables D ∈R

d×1 for
clustering, the length of validation time series q, the number of data points in the
training set m, the number of data points in the validation set v, the sparsification
values λ ∈R

r, the number of library terms p, and the number of samples in each
cluster K.

1: procedure HYBRID-SINDY(X, D, s, m, v, c, K)
2: XT ∈R

m×n, XV ∈R
v×n← testTrainSeparation(X, m, v) � Construct training/validation

3: ẊT ∈R
m×n, ẊV ∈R

v×n← derivative(XT, XV) � Compute derivative matrix
4: YT ∈R

m×d← variables(XT, ẊT,D) � Construct Augmented Measurements
5: YV ∈R

m×d← variables(XV , ẊV ,D) � Construct Augmented Measurements
6: for i ∈ {1, 2, . . . m} do � For each sample in the training set ti, compute:
7: Ci

T ∈R
K← cluster(YT, YT(i, :),K) � Cluster K samples from YT for each YT(i, :)

8: Ci
V ∈R

K← cluster(YV , centroid(YT(Ci
T, :)),K) � Cluster K samples of YV for Ci

T
9: Θ i ∈R

m×p← library(XT(Ci
T, :)) � Generate library that contains p features

10: for j ∈ {1, 2, · · · , r} do � Search over sparsification parameter λ.
11: Model(j)← SINDy(ẊT(Ci

T,:), Θ i, λ(j) ) � Identify sparse features & model.
12: for s ∈ {1, 2, . . . , K} do � Calculate error for each point in cluster
13: Z ∈R

q×n← simulate (Model(j), XV(Ci
V(s), :), q) � Simulate model

14: ZV ∈R
q×n← find(XV , XV(Ci

V(s), :), q) � Find validation time series
15: ts← detect switching(Z, ZV) � Find switching time
16: for l ∈ {1, 2, . . . , n} do � Calculate error
17: Evariable(l)← 1

ts

∑ts
a=1(Z(a, l)− ZV(a, l))2 � Avg. over time

18: end for
19: Eavg(s)← 1

n
∑n

l=1 Evariable(l) � Avg. over measurements
20: end for
21: k← numberOfFreeParameters(Model(j))
22: AICc(j)← ComputeAICc(Eavg,k,K)
23: end for
24: 
 AICc← sort(AICc-minimum(AICc)) � Rank models by relative AICc scores.
25: Π← I(Model(
 AICc < 3)) � Store models with support in library
26: end for
27: ind← sort(frequency(Π)) � Sort models by frequency across clusters.
28: return Π(ind) � return the most frequent models.
29: end procedure

(c) SINDy for clustered data
We perform SINDy for each training cluster Ci

T, using an alternating least squares and hard
thresholding described in [19] and §2b. For each cluster, we search over the sparsification
parameter, λ(j) ∈ {λ1, λ1, . . . λr}, generating a set of candidate models for each cluster; see figure 1d
for an illustration. In practice, the number of models per cluster is generally less than r since
multiple values of λ can produce the same model. In this article, the library, Θ(X), includes
polynomial functions of increasing order (i.e. x, x2, x3, . . .), similar to the examples in [19].
However, the SINDy library can be constructed with other functional forms that reflect intuition
about the underlying process and measurement data.

(d) Model validation and library construction
Validation involves producing simulations from candidate models and comparing to the
validation data. Using the validation cluster as a set of K initial conditions Ci

V , we simulate each
candidate model j in cluster i for q time steps producing time series Z ∈R

q×n. We compare these
simulations against the validation time series ZV and calculate an out-of-sample AICc score. An
example illustration comparing ZV and Z for a single cluster is shown in figure 2a.
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Figure 2. Steps for local validation and selection of models. For each cluster from the training set, we identify validation time-
series points that are local to the training cluster centroid (black dots, (a)). We simulate time series for eachmodel in the cluster
library, starting from each point in the validation cluster (teal, gold and purple dots) and calculate the error from the validation
time series. Using this error we calculate a relative AICc value and rank eachmodel in the cluster (b). We collect themodels with
significant support into a library, keeping track of their frequency across clusters. The highest frequency models across clusters
are shown in (c). Note that the colours associated with eachmodel in (c) are consistent across panels. (Online version in colour.)

In order to calculate the error between the simulation and validation, we must first account
for the possibility of the dynamics switching before the end of the q validation time steps. We
use the function findchangepoints in Matlab [85] to detect a change in the mean of the absolute
error between the simulated and validation time series. The time index closest to this change
is denoted ts. Notably, this algorithm does not robustly find the time at which our time-series
switch dynamical regimes. The algorithm tends to identify the transition prematurely, especially
in oscillatory systems. We use ts as a lower bound, before which we can reasonably compare the
simulated and validation data.

To assess a model’s predictive performance within a cluster, we compare the simulated data
Z and validation data ZV restricted to time points before ts. Specifically, we calculate the residual
sum of square error for a candidate model by comparing the K time series from the validation
data to the model outputs, described by Eavg(s)= (1/n)

∑n
l=1((1/ts)

∑ts
a=1(za,l − zV

a,l)
2) for s ∈ [1, K],

where za,l corresponds to the a row and l column of Z and similarly with zV
a,l to ZV . Thus, the

vector Eavg contains the average error over time points and state variables for K initial conditions
of model r.

For each candidate model r, we calculate the AICc from (2.6) using AIC(r)=K ln(Eavg/K)+ 2k,
the number of initial conditions in the validation set K, the average error for each initial condition,
Eavg, and the number of free parameters (or terms) in the selected model k [5,6]. An equivalent
procedure is found in [20]. Once we have AICc scores for each model within the cluster, we
calculate the relative AICc scores and identify models within the cluster with significant support
where the relative AICc < 3; see figure 2b for an illustration. These models are used to build the
model library. Models with larger relative AICc are discarded, illustrated in figure 1e. Note that
multiple models can have significant support within a single cluster. We include each of these
supported models in the library. The model library records the structure of highly supported
models and how many times they appear across clusters.

Choosing the optimal number of data points K for all clusters will be application specific.
For too few data points per cluster, the out-of-sample error should be large due to model
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misidentification. Increasing the K value should decrease the out-of-sample error and mitigate
the impact of noise; choosing a specific K will require the practitioner to decide on an acceptable
out-of-sample error profile. For large K more clusters will include a switching point, resulting
in misidentification as the cluster will include data from multiple processes. This will appear
as a rise in out-of-sample error and effectively decrease the resolution of switching point
discovery.

(e) Identification of high-frequency models and switching events
After building a library of strongly supported models, we analyse the frequency of model
structures appearing across clusters, illustrated in figure 2c. The most frequent models and the
location of their centroids provide insight into connected regions of measurement space with the
same model (e.g. figure 1f ). By examining the location and absolute AICc scores of the models,
we can identify regions of similar dynamic behaviour and characterize events corresponding to
dynamic transitions.

4. Results: model selection

(a) Mass–spring hopping model
In this subsection, we demonstrate the effectiveness of Hybrid-SINDy by identifying the
dynamical regimes of a canonical hybrid dynamical system: the spring–mass hopper. The
switching between the flight and compression stages of the hopper depends on the state of
the system [2]. Figure 1b illustrates the flight and spring compression regimes and dynamic
transitions. Note these distinct dynamical regimes are called charts, and liftoff and touchdown
points are state-dependent events separating the dynamical regimes; see §2a for connections
to hybrid dynamical system theory. The legged locomotion community has been focused on
understanding hybrid models due to their unique dynamic stability properties [86], the insight
into animal and insect locomotion [2,87], and guidance on the construction and control of legged
robots [88–90].

A minimal model of the spring–mass hopper is given by the following:

mẍ=
{
−k(x− x0)−mg, x≤ x0,

−mg, x > x0,
(4.1)

where m is the mass, k is the spring constant, and g is the gravity. The unstretched spring length
x0 defines the flight and compression stages, i.e. x > x0 and x≤ x0, respectively. For convenience,
we non-dimensionalize (4.1) by scaling the height of the hopper by y= x/x0, scaling time by
τ = t

√
(kx0/m) and forming the non-dimensional parameter κ = kx0/mg. Thus, κ represents the

balance between the spring and gravity forces. Equation (4.1) becomes

ÿ=
{

1− κ(y− 1), y≤ 1,

−1, y > 1.
(4.2)

For our simulations, we chose κ = 10. The switching point between compression and flying occurs
at y= 1 in this non-dimensional formulation.

(i) Generating input time series from the model

We generate time-series samples from (4.2) by selecting three initial conditions (y0, ẏ0) ∈
{(0.8,−0.1), (0.78,−0.1), (0.82,−0.1)}. We simulate the system for a duration of t= [0 5] with
sampling intervals of 
τ = 0.033, producing 152 samples per initial condition. The resulting
time series of the position and velocity, y(ti) and ẏ(ti), are used to construct the training-
set matrices XT =YT = [y(ti) ẏ(ti)] where each row corresponds to sample. The position
and velocity time series are plotted in figure 1b. Figure 1c illustrates the position–velocity

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 J

ul
y 

20
23

 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180534

...........................................................

0.75

1.00po
si

tio
n

ve
lo

ci
ty

fu
ll 

ra
ng

e

A
IC

c

zo
om

ed
 r

an
ge

1.25

1.50
models identified on time-series coefficients of x·· low AICc for correct models

–1.0
0 1 2 3

time
4 5 6 0 1 2 3

time
4 5 6 0 1 2 3

time
4 5 6

–0.5
0

0.5
1.0

10–4

10–2

1

102

–10
–6
–2
2
6

10

–300
–100
100
300

(b)(a) (c)

Figure 3. Hopping model discovery shown in time. Single time series of data and associated model coefficients and AICc are
plotted as a function of time with the correct models indicated by colour. Teal dots indicate the recovery of compressed spring
model, purple dots indicate recovery of the flying model and yellow and gold dots indicate recovery of incorrect models. Both
coefficients and absolute AICc are plotted for themodelwith only the lowest AICc value at each cluster. (Online version in colour.)

trajectories in phase-space. We also add Gaussian noise with mean zero and standard
deviation 10−6 to the position and velocity time series in YT. In this example, the
derivatives ẊT = ẎT = [ẏ(ti)T ÿ(ti)T] are computed exactly, without noise. The validation set
YV is generated using the same intervals and duration, but for initial conditions: (y0, ẏ0) ∈
{(0.84,−0.11), (0.77,−0.12), (0.83,−0.13), (0.79,−0.13), (0.79,−0.10), (0.82,−0.11)}.

(ii) Hybrid-SINDy discovers flight and hopping regimes

In this case, the position and velocity measurements in phase space provide a natural, data-driven
coordinate system to cluster samples. Here, we identify m= 492 clusters, one for each timepoint.
Figure 2a illustrates three of these clusters. We use a model library containing polynomials up
to second order in terms of XT. Applying SINDy to each cluster, we produce a set of models for
each cluster and rank them within the cluster using relative AICc; this procedure is illustrated in
figure 2b. We retain only the models with strong support, relative AICc < 3. Figure 2c shows that
the correct models are the most frequently identified by Hybrid-SINDy. In addition, when we plot
the location of the discovered models in data-driven coordinates (phase space for this example),
we clearly identify the compression model when y < 1 (teal) and the flying model when y > 1
(purple). There is a transition region at y= 1, where the incorrect models, plotted in gold and
yellow, are the lowest AICc models in the cluster.

To investigate the success of model discovery over time, figure 3 illustrates the discovered
models (same colour scheme as in figure 2), the estimated model coefficients and the associated
absolute AICc values. The four switching points between compression (teal) and flying (purple)
area clearly visible, with incorrect models (gold and yellow) marking each transition. The model
coefficients are consistent within either the compression or flying region, but become large within
the transition regions, shown in figure 3b.

The AICc plot shows only the lowest absolute AICc found in each cluster for the top four most
frequent models across clusters. There is a substantial difference between the AICc values for the
correct (AICc ≤ 3× 10−3) and incorrect models (AICc ≥ 2× 10−2). As the system approaches a
transition event, the AICc for Hybrid-SINDy increases significantly. The increase is likely due
to two factors: (i) as we approach the event there are fewer time points contributing to the
AICc calculation, and (ii) we find an inaccurate proposed switching point, ts, for validation data.
As a switching event is approached, locating ts becomes challenging, and points from after a
transition are occasionally included in the local error approximation ε(k). Note that the increase
in AICc between clusters provides a more robust indication of the switch than Matlab’s built
in function findchangepoints applied to the time series without clustering. The findchangepoints,
which uses statistical methods to detect change points, often fails for dynamic behaviour such as
oscillations.
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Table 1. School calendar for a year.

session days time period (months) transmission rate

winter break 0–35 1.2 β = 5.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spring term 35–155 4 β = 16.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

summer break 155–225 2.3 β = 5.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fall term 225–365 4.6 β = 16.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) SIR disease model with switching transmission rates
In this section, we investigate a time-dependent hybrid dynamical system. Specifically, we focus
on the Susceptible, Infected and Recovered (SIR) disease model with varying transmission rates.
This dynamical system has been widely studied in the epidemiological community due to the
nonlinear dynamics [1] and the related observations from data [91]. For example, the canonical
SIR model can be modified to increase transmission rates among children when school is in
session due to the increased contact rate [92]. Figure 4a illustrates the switching behaviour. The
following is a description of this model:

Ṡ= νN − β(t)
N

IS− dS, (4.3a)

İ= β(t)
N

IS− (γ + d)I (4.3b)

and Ṙ= γ I − dR, (4.3c)

where ν = 1/365 is the rate which students enter the population, d= ν is the rate at which students
leave the population, N= 1000 is the total population of students, and γ = 1/5 is the recovery rate
when 5 days is the average infectious period. The time-varying rate of transmission, β(t), takes
on two discrete values when school is in or out of session:

β(t)=

⎧⎪⎨
⎪⎩

β̂(1+ b), t ∈ school in session,

β̂
1

(1+ b)
, t ∈ school out of session.

(4.4)

The variable β̂ = 9.336 sets a base transmission rate for students and b= 0.8 controls the change
in transmission rate. The school year is composed of in-class sessions and breaks. The timing of
these periods is outlined in table 1. We chose these slightly irregular time periods, creating a time
series with annual periodicity, but no sub-annual periodicity. A lack of sub-annual periodicity
could make dynamic switching hard to detect using a frequency analysis alone.

(i) Generating input time series from the SIR model

To produce training time series, we simulate the model for 5 years, recording at a daily interval.
This produces 1825 time points. We collect data along a single trajectory starting from the initial
condition at S0 = 12, I0 = 13, R0 = 975. For this model, the dynamic trajectory rapidly settles into
a periodic behaviour, where the size of spring and fall outbreaks is the same for each year. We
add a random perturbation to the start of each session by changing the number of children within
the S, I and R state independently by either −2, −1, 0, 1 or 2 children with equal probability.
Over 5 years, this results in 19 perturbations, not including the initial condition. In reality,
child attendance in schools will naturally fluctuate over time. These perturbations also help in
identifying the correct model by perturbing the system off of the attractor. In this example, the
training and validation sets rely solely on S and I such that YT = [S(ti)T I(ti)T]. The validation
time series, YV , are constructed with the same number of temporal samples from a new initial
condition S0 = 15, I0 = 10, R0 = 975.
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Figure 4. Sparse selection of Susceptible-Infected-Recovered (SIR) disease model with varying transmission rates. (a) School
children have lower transmission rates during school breaks (white background), and higher transmission due to increased
contact between children while school is in session (blue background). The infected, I, and susceptible, S, population dynamics
over one school year, show declines in the infected population while school is out of session, followed by spikes or outbreaks
when school is in session as shown in (b). Clustering in data-driven coordinates S versus I, shown in (c), and performing SINDy
on the clusters, identifies a region with high transmission rate (maroon) and low transmission rate (pink). A frequency analysis
across all clusters of the low AICc models in each cluster, shown in (d), identifies two models of interest. The highest frequency
model is the correct model, and SINDy has recovered the true coefficients for this model in both high and low transmission
regimes. (e) The coefficients of the highest frequency model recovered in time. (f ) Overlays the recovered transmission rates on
the time-series data used for selection. (Online version in colour.)

(ii) Hybrid-SINDy discovers the switching from school breaks

The relatively low transmission rate when school is out of session leads to an increase in the
susceptible population. As school starts, the increase in mixing between children initiates a rapid
increase in the infected population, illustrated in figure 4a,b. The training data for Hybrid-SINDy
include the S and I time series illustrated in figure 4f . The validation time series is used to calculate
the AICc values. Here, we cluster the measurement data using the coordinates S and I, with K= 30
points per cluster. We use a model library containing polynomials up to third order in terms of XT.
Two models appear with high frequency across a majority of the clusters. The highest frequency
model identifies the correct dynamical terms described in equation (4.3). The other frequently
identified model is a system with zero dynamics.

Examining the coefficients for the highest frequency model over time, we identify three
reoccurring sets of coefficients, illustrated in figure 4e. The first set of recovered values correctly
matches the coefficients for equations (4.3a,b) when school is out, the second set correctly recover
coefficients for when school is in session, and the third are incorrect. Only the coefficient on the
nonlinear transmission term, IS, changes value between the recovered in-school (pink) and out-
of-school (maroon) transmission rates. The other coefficients (purple) are constant across the first
two sets of coefficients.

The third set of coefficients (grey) are incorrect. However, during these periods of time the
most frequently appearing model no longer has the lowest AICc. The second highest frequency
model Ṡ= 0, İ= 0 has the lowest AICc values at those times. Additionally, the AICc values are four
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orders of magnitude larger than those calculated for the correct model with correct coefficients.
Notably, the second highest frequency model is identified by Hybrid-SINDy for regions where S
and I are not changing because the system has reached a temporary equilibrium. This model is
locally accurate, but cannot predict the validation data once a new outbreak occurs, and thus has
a high (AICc ≈ 10−3 to 1) compared to the correct model (AICc ≈ 10−6 to 10−8).

(c) Robustness of Hybrid-SINDy to noise and cluster size
We examine the performance of Hybrid-SINDy when varying the cluster size and noise level. The
effect of cluster-size is particularly important to understand the robustness of Hybrid-SINDy. In
§4a, Hybrid-SINDy failed to recover the model during the transition events. This was primarily
due to the inclusion of data from both the flying and hopping dynamic regions. In this case, the
size of the regions where Hybrid-SINDy is not able to identify the correct model increases with
cluster size. Alternatively, if the cluster size is too small, the SINDy regression procedure will not
be able to recover the correct model from the library.

To investigate the impact of cluster size in SINDy’s success, we perform a series of numerical
experiments varying the cluster size and noise level. We generate a new set of training time series
for the mass–spring hopping model consisting of time series from 100 random initial conditions
normally distributed between x0 ∈ [1, 1.5] and v0 ∈ [0, 0.5]. We divide the training set into the
compression and flying subsets, avoiding the switching points. Clusters in the flying subset are
constructed by picking the time-series point with maximum position value (highest flying point),
and using a nearest neighbour clustering algorithm. By increasing K, the size of the clusters
increase. A similar procedure is performed during the compression phase. Cluster sizes range
from K= 10 to 14 500.

We also evaluated the recovery of correct model in these clusters by increasing measurement
noise. Normally distributed noise with mean zero and ε from 10−4 to 10 was added to the position,
x, and velocity, v, training and testing time-series data in X. We computed the derivatives in Ẋ
exactly, isolating measurements noise from the challenge of computing derivatives from noisy
data. For each cluster size and noise level, we generated 20 different noise realizations. SINDy
is applied to each realization separately, and the fraction of successful model identifications are
shown as the colour intensity in figure 5a. We did not perform a validation step, but directly
checked whether the correct model was within the recovered set. With high fidelity, SINDy
recovers the correct models for both the compression and flying clusters, when noise is relatively
low and the cluster-size is relatively large, figure 5a. Interestingly, the cluster and noise-threshold
are not the same for the compression and flying model. Recovery of the compression model varies
with both noise and cluster size (the noise threshold increases for larger clusters). The cluster
threshold, near K > 50 points, and noise threshold, near ε < 1, for recovery of the flying model are
independent. Notably, the flying model, which is simpler than the compression model, requires
larger cluster size at the low noise limit.

(d) Condition number and noise magnitude offers insight
To investigate the recovery patterns and the discrepancy between the compression and flying
model, we calculate the condition number of Θ(X) for each cluster-size and noise magnitude,
as shown in figure 5b. The range of condition numbers between the two dynamical regimes are
notably different. Furthermore, the threshold for recovery (grey) does not follow the contours for
the condition number. If we instead plot contours of condition number times noise magnitude,
κε, as shown in figure 5c, the contours for successful model discovery match well. The threshold,
κε, required for discovery of the compression model is much lower than that for the flying model.

The κε diagnostic can be related to the noise-induced error in the least squares solution—that
is, the error in the solution of (2.4) with λ̂= 0 and noise added to the observations X. Because the
SINDy algorithm converges to a local solution of (2.4) [93], the closeness of the initial least-squares
iteration to the true solution gives some sense of when the algorithm will succeed. Let Ξ denote
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Figure 5. Success of Hybrid-SINDy on clustered compression (top) and flying (bottom) time-series points with varying noise
(x-axis) and cluster size (y-axis). (b) Show the fraction of success in finding the correct model, over 20 noise-instances. When
clusters are large and noise is low, models are recovered 100% of the time. The colour contours on (b) plots indicate log10 of the
condition number of the function librarywith time series for each cluster size and noise level plugged in. (c) Plots show the log10
of the condition number of times the noise. Contours of condition number of times noise follow the contour lines for successful
discovery of the model (grey). (Online version in colour.)

the true solution and δΞ ls denote the difference between the true solution and the least-squares
solution for noisy data. Then

‖δΞ ls‖2
‖Ξ‖2

≤ Cκε

1− Cκε
, (4.5)

for some constant C which depends only on the library functions. Note that the condition number,
κ , depends on the sampling (cluster size) and choice of library functions. The complex interplay
among the magnitude of noise, sampling schemes and choice of SINDy library in (4.5) provides
a threshold for when we expect Hybrid-SINDy to recover the true solution. See appendix A for
a more detailed discussion. The plots in figure 5c show that this diagnostic threshold correlates
well with the empirical performance of SINDy.

It remains unclear why the particular value of κε for which the algorithm succeeds is
three orders of magnitude higher for the flying regime than that for the compression regimes.
Intuitively, there are more terms to recover and these terms have a high contrast. However, these
considerations do not fully account for the difference in the observed behaviours. In appendix A,
we provide some further intuition as to why the regression problem in the compression regime
is more difficult than the problem in the flying regime. A more fine-grained analysis is required,
taking into account the heterogeneous effect that noise in the observations has on the values of
the library functions.

5. Discussion and conclusion
Characterizing the complex and dynamic interactions of physical and biological systems
is essential for designing intervention and control strategies. For example, understanding
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infectious disease transmission across human populations has led to better informed large-scale
vaccination campaigns [94,95], vector control programmes [96,97] and surveillance activities [96,
98]. The increasing availability of measurement data, computational resources and data storage
capacity enables new data-driven methodologies for characterization of these systems. Recent
methodological innovations for identifying nonlinear dynamical systems from data have
been broadly successful in a wide variety of applications including fluid dynamics [37],
epidemiology [99], metabolic networks [21] and ecological systems [27,30]. The recently
developed SINDy methodology identifies nonlinear models from data, offers a parsimonious and
interpretable model representation [19] and generalizes well to realistic constraints such as limited
and noisy data [20–22]. Broadly, SINDy is a data-analysis and modelling tool that can provide
insight into mechanism as well as prediction. Despite this substantial and encouraging progress,
the characterization of nonlinear systems from data is incomplete. Complex systems that exhibit
switching between dynamical regimes have been far less studied with these methods, despite the
ubiquity of these phenomena in physical, engineered and biological systems [2,63].

The primary contribution of this work is the generalization of SINDy to identify hybrid
systems and their switching behaviour. We call this new methodology Hybrid-SINDy. By
characterizing the similarity among data points, we identify clusters in measurement space using
an unsupervised learning technique. A set of SINDy models is produced across clusters, and
the highest frequency and most informative, predictive models are selected. We demonstrate the
success of this algorithm on two modern examples of hybrid systems [2,91]: the state-dependent
switching of a hopping robot and the time-dependent switching of disease transmission dynamics
for children in-school and on-vacation.

For the hopping robot, Hybrid-SINDy correctly identifies the flight and compression regimes.
SINDy is able to construct candidate nonlinear models from data drawn across the entire time
series, but restricted to measurements similar in measurement space. This innovation allows
data to be clustered based on the underlying dynamics and nonlinear geometry of trajectories,
enabling the use of regression-based methods such as SINDy. The method is also quite intuitive
for state-dependent hybrid systems; phase-space is effectively partitioned based on the similarity
in measurement data. Moreover, this equation-free method is consistent with the underlying
theory of hybrid dynamical systems by establishing charts where distinct nonlinear dynamical
regimes exist between transition events. We also demonstrate that Hybrid-SINDy correctly
identifies time-dependent hybrid systems from a subset of all of the phase variables. We can
identify the SIR system with separate transmission rates among children during in-school
versus on-vacation mixing patterns, based solely on the susceptible and infected measurements
of the system. For both examples, we show that the model error characteristics and the
library of candidate models help illustrate the switching behaviour even in the presence of
additive measurement noise. These examples illustrate the adaptability of the method to realistic
measurements and complex system behaviours.

Hybrid-SINDy incorporates the fundamental elements of a broad number of other
methodologies. The method builds a library of features from measurement data to better predict
the future measurement. Variations of this augmentation process have been widely explored over
the last few decades, notably in the control theoretic community with delay embeddings [23–26],
Carleman linearization [32] and nonlinear autoregressive models [42]. More recently, machine-
learning and computer science approaches often refer to the procedure as feature engineering.
Constraining the input data is another well-known approach to identify more informative and
predictive models. Examples include windowing the data in time for autoregressive moving
average models or identifying similarity among measurements based on the Takens’ embedding
theorem for delay embeddings of chaotic dynamical systems [28,30,100]. With Hybrid-SINDy, we
integrate and adapt a number of these components to construct an algorithm that can identify
nonlinear dynamical systems and switching between dynamical regimes.

There are limitations and challenges to the widespread adoption of our method. The method
is fundamentally data-driven, requiring an adequate amount of data for each dynamical regime
to perform the SINDy regression. We also rely on having access to a sufficient number
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of measurement variables to construct the nonlinear dynamics, even with the inclusion of
delay embeddings. These measurements also need to be in a coordinate frame to allow for
a parsimonious description of the dynamics. We only consider hybrid dynamical systems
without non-autonomous inputs or designed control inputs. The original SINDy procedure has
been augmented to allow exogenous inputs or control [101]. To adapt Hybrid-SINDy to these
systems, the clustering procedure would need to be modified to optimally cluster spatiotemporal
measurements and inputs. In order to test the robustness of our results, we evaluate the condition
number and noise magnitude as a numerical diagnostic for evaluating the output of Hybrid-
SINDy. However, despite developing a rigorous mathematical connection between this diagnostic
and numerically solving the SINDy regression, we discovered that there does not exist a specific
threshold number that generalizes across models and library choice.

The k-nearest-neighbour clustering methodology was chosen as a computationally efficient,
non-parametric statistical technique that does not a priori define statistical distributions for
the data. Other clustering techniques could be easily implemented in our algorithm. For very
large numbers of state-variables the clustering step may become computationally prohibitive
with all techniques, potentially requiring an innovative down-sampling procedure or on-
line improvement of models. Efficient on-line adaptation of models accompanied with more
expensive off-line computations have been widely researched for model reduction of higher
dimensional systems [102], system identification [103] and k-nearest-neighbour clustering [104].
In a future research direction, the Hybrid-SINDy methodology could be generalized to
include these online–offline innovations for significantly larger systems than considered in this
article.

Despite these limitations, Hybrid-SINDy is a novel step toward a general method for
identifying hybrid nonlinear dynamical systems from data. We have mitigated a number of the
numerical challenges by incorporating information theoretic criteria to manage uncertainty and
offering a procedure to validate the results against cluster size and noise magnitude. Looking
ahead, discovering a general criteria that holds across a wide variety of applications and models
will be essential for the wide-spread adoption of this methodology. Furthermore, we foresee the
innovative work around data-driven identification of nonlinear manifolds as another important
research direction for Hybrid-SINDy [40,41].
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Appendix A. Bound derivation
Zhang & Schaeffer [93, theorem 2.5] showed that the SINDy hard-thresholding procedure
converges to a local solution of (2.4) with R(·)= ‖ · ‖0. Because that problem is non-convex, a local
solution may or may not be equal to the true global solution. We are interested in characterizing
when the initial guess for SINDy is ‘close’ to the exact sparse solution.

For each value of λ̂, we initialize SINDy with the least-squares solution, i.e. the solution of (2.4)
with λ̂= 0. Noise is added to the observations X alone and Ẋ is without noise. Let X+ δX denote
the noisy data and let δΘ :=Θ(X+ δX)−Θ(X) denote the perturbation in the resulting library.
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For the sake of simplicity, we will assume that ‖δΘ‖2/‖Θ‖2 ≤C‖δX‖2/‖X‖2 ≤Cε, where ε is the
noise level and C depends only on the choice of library functions. We further assume that Θ and
Θ + δΘ are full rank and that Ẋ=ΘΞ , i.e. that Ẋ is in the range of Θ so that the true solution Ξ

satisfies Ξ =Θ†Ẋ, where † denotes the Moore–Penrose pseudo-inverse.
The solution of the noisy least-squares problem is then Ξ + δΞ ls = (Θ + δΘ)†Ẋ , where δΞ ls

denotes the resulting error. Let κ = ‖Θ‖2‖Θ†‖2 denote the condition number of Θ . We have the
bound (4.5) from the main text

‖δΞ ls‖2
‖Ξ‖2

≤ Cκε

1− Cκε
, (A 1)

provided that Cκε < 1. The derivation of (A 1) is non-trivial; for a reference, see [105, theorem 5.1].
To see why the flying model is easier to recover than the compression model for a given value

of κε, we consider a single step of hard thresholding. For this derivation, we consider Ξ to be a
vector; this assumption holds when Ξ is not a vector, since we typically consider solving for each
column of Ξ independently in the SINDy regression. Let c denote the size of the smallest non-
zero coefficient in Ξ , i.e. c=mini,j s.t. Ξij 
=0 |Ξij|. A single step of hard thresholding will succeed in
finding the true support of Ξ using the threshold c/2 when ‖δΞ ls‖∞ is smaller than c/2. Let k be
the number of non-zero entries in Ξ . Observing that ‖Ξ‖2 ≤

√
k‖Ξ‖∞, we have

‖δΞ ls‖∞
c

≤
√

k‖Ξ‖∞
c

‖δΞ ls‖2
‖Ξ‖2

≤
√

k‖Ξ‖∞
c

Cκε

1− Cκε
. (A 2)

We see that the number of non-zero coefficients and the ratio of the largest to smallest
coefficients in the true solution affect the success of a single step of hard thresholding. Intuitively,
then, the compression model is more difficult to recover than the simpler flying model. However,
the factor

√
k‖Ξ‖∞/c only accounts for about an order of magnitude of the discrepancy in the

κε threshold at which SINDy correctly recovered compression and flying models in figure 5.
A likely culprit for the remaining difference is the variation in the effect of noise on different basis
functions in the library. For example, adding noise to X has no effect on the constant term, but
will be magnified by a quadratic term. A more fine-grained analysis of the error corresponding to
the specific functions in the model could account for the remaining discrepancy.
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