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Abstract. The dynamic mode decomposition (DMD) is a broadly applicable dimensionality4
reduction algorithm that decomposes a matrix of time-series data into a product of a matrix of ex-5
ponentials, representing Fourier-like time dynamics, and a matrix of coefficients, representing spatial6
structures. This interpretable spatio-temporal decomposition is classically formulated as a nonlin-7
ear least squares problem, and solved within the variable projection framework. When the data8
contains outliers, or other features that are not well-represented by exponentials in time, the stan-9
dard Frobenius norm misfit penalty creates significant biases in the recovered time dynamics. As10
a result, practitioners are left to clean such defects from the data manually or to use a black-box11
cleaning approach like robust PCA. As an alternative, we propose a robust statistical framework12
for the optimization used to compute the DMD itself. We also develop variable projection algo-13
rithms for these new formulations, which allow for regularizers and constraints on the decomposition14
parameters. Finally, we develop a scalable version of the algorithm by combining the structure of15
the variable projection framework with the stochastic variance reduction (SVRG) paradigm. The16
approach is tested on a range of synthetic examples, and the methods are implemented in an open17
source software package RobustDMD1.18
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1. Introduction. Dimensionality reduction is a critically enabling tool in ma-21

chine learning applications. Specifically, extracting the dominant low-rank features22

from a high-dimensional data matrix X ∈ Rm×n allows one to efficiently perform tasks23

associated with clustering, classification and prediction. As defined by [11], linear di-24

mensionality reduction methods solve an optimization problem with objective fX(·)25

over a manifold M to produce a linear transformation P which maps the columns26

of X to a lower dimensional space. Many popular methods can be written in this27

framework by an appropriate definition of fX(·) and specification of the manifoldM.28

For instance, the principal component analysis (PCA) may be written as29

(1.1) M̂ = arg minM∈M‖X−MMᵀX‖F , M = Om×k ,30

where Om×k is the manifold of m× k matrices with orthonormal columns, i.e. M is31

a Stiefel manifold. The map P is then given by M̂ᵀ. One of the primary conclusions32

of the survey [11], is that — aside from the PCA itself — many of the common33

methods for linear dimensionality reduction based on eigenvalue solvers are actually34
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sub-optimal heuristics and the direct solution of the optimization problem (1.1) should35

be preferred.36

In this manuscript, we consider a particular linear dimensionality reduction tech-37

nique: the dynamic mode decomposition (DMD). In the past decade, the DMD38

has been applied to the analysis of fluid flow experiments and simulations, machine39

learning enabled control systems, and Koopman spectral analysis, among other data-40

intensive problems described by dynamical systems. The success of the algorithm41

is largely due to the interpretability of the low-rank spatio-temporal modes it gen-42

erates in approximating the dominant features of the data matrix X. The DMD43

was originally defined to be the output of an algorithm for characterizing time-series44

measurements of fluid flow data [28, 27]. It was later reformulated by [30] as a45

least-squares regression problem whereby the DMD could be stably computed using46

a Moore-Penrose pseudo-inverse and an eigenvalue decomposition.47

An earlier though less commonly used formulation, the optimized DMD [9], can48

be phrased as the optimization problem49

(1.2) M̂ = arg minM∈M‖X−MM†X‖F , M = Φ(Ck) ,50

where the map α 7→ Φ(α) defines a matrix with columns corresponding to exponential51

time dynamics (see Section 2.1) and M† denotes the Moore-Penrose pseudo-inverse52

of M . This can be thought of as a best-fit linear dynamical system approximation53

of the data. In most applications, it is this exponential model of the observed data54

which is the real object of interest, as it is this model which is used in forecasting and55

interpolation. Thus, the original DMD algorithm [28, 27] and the reformulation [30]56

end up being heuristics for finding approximate solutions of (1.2).57

In agreement with the conclusions of [11], the optimized DMD, while more costly58

to compute, is more robust to additive noise than established heuristic methods based59

on eigensolvers, i.e. the exact DMD and its noise-corrected alternatives [12, 4]. It60

is also more flexible than the exact DMD, allowing for non-equispaced snapshots.61

While the optimized DMD does not fit directly into the optimization framework of62

[11], which is defined for M either a Stiefel manifold or a Grassmannian manifold, it63

can be computed efficiently using classical variable projection methods [16, 15, 4].64

The DMD has been used in a variety of fields where the nature of the data65

can lead to corrupt and noisy measurements. This includes applications ranging from66

neuroscience [7] to video processing [17, 14] to fluid dynamics [28, 27, 18, 12]. Although67

the Frobenius norm used in the definition of the optimized DMD (1.2) is appealing68

due to its physical interpretability in many applications (energy, mass, etc.), it has69

significant flaws that can severely limit its applicability. Specifically, corrupt data or70

large noise fluctuations can lead to significant deformation of the DMD approximation71

of the data because the Frobenius norm implicitly assigns a very low probability to72

such outliers (see Section 2.3). In practice, these outliers are often removed from the73

data manually or using a black-box filtering approach like robust PCA [23, 32, 8].74

However, such approaches ignore the structure of the DMD approximation and may75

introduce biases of their own. Further, it is desirable that DMD methods not only be76

robust to “noisy” outliers but also to non-exponential structure in the data.77

Contributions. Here, we develop an automated approach to robust DMD. Specif-78

ically, we modify the optimized DMD definition (1.2) to incorporate ideas from the79

field of robust statistics [24, 20] in order to produce a decomposition that is signif-80

icantly less sensitive to outliers in the data. Because the new problem formulation81

incorporates robust norms, many of the efficient strategies used in variable projection82

algorithms for problems defined in the Frobenius norm are no longer available. To83
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remedy this, we develop a number of algorithms based on modern variable projection84

methods [3, 2] which exploit the structure of the DMD for increased performance.85

In particular, we can incorporate nonsmooth features, such as regularizers and con-86

straints, and scale to large problems using stochastic variance reduction techniques.87

This flexible architecture allows us to impose physically relevant constraints on the88

optimization that are critical for tasks such as future-state prediction. For instance,89

we can impose the constraint that the real parts of the DMD eigenvalues are non-90

positive, thus ensuring that solutions do not grow to infinity when forecasting.91

The effect of noise on the DMD is a well-studied area. Controlling for the bias92

of the exact DMD in the presence of additive noise was treated by [19] and [12]. A93

Bayesian formulation of the DMD was presented by [29]. This formulation is flexible94

enough to incorporate robust statistics but this was not a focus of that work. In [13],95

Dicle et al. presented a robust formulation of exact DMD type, which complements96

the current work.97

The rest of this manuscript is organized as follows. In Section 2, we provide98

some necessary preliminaries from the DMD, robust statistics, and variable projection99

literature and we present our problem formulation. A detailed description of the100

algorithms we use to solve the robust DMD formulation follows in Section 3. We101

apply these methods to synthetic data in Section 4, demonstrating the effectiveness102

of the robust formulations. Finally, we provide some concluding remarks and describe103

possible future directions in Section 5.104

2. Preliminaries. In this section, we outline some of the precursors of this work105

and present our problem formulation.106

2.1. Dynamic mode decomposition. As mentioned above, the dynamic mode107

decomposition (DMD) corresponds to a best-fit linear dynamical model of the data.108

Let X ∈ Cm×n be a snapshot matrix whose rows, xj , are samples of an n dimen-109

sional dynamical system at a set of m sample times tj . If we suppose that the xj110

arise from linear time dynamics, i.e.111

ẋ(t) = Ax(t) ,

then112

xᵀ
j = etjAx(0) .

Assuming a diagonalizable matrix A, this can be rewritten as113

xᵀ
j = S exp(tjD)S−1x(0) ,

where D is a diagonal matrix made up of the eigenvalues of A and the columns of S114

are eigenvectors of A. We observe that each entry in xj is then a linear combination115

of the terms exp(D11tj), . . . , exp(Dnntj). In the DMD setting, we make the further116

assumption that the samples, xj , project onto a relatively small number, k � n, of117

the eigenvectors. The optimized DMD problem is to then discover these eigenvalues118

and the coefficients of x(t) in the exponential basis based on the samples xj .119

To be precise, for a given rank k, let α ∈ Ck be a vector of complex numbers120

corresponding to eigenvalues as in the above. We then define the matrix Φ(α; t) by121

(2.1) Φij(α) = eαjti .122
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When it is clear in context, we often drop the dependence of Φ on α and t. Let123

B ∈ Ck×n be a matrix containing coefficients for each entry in x(t) in the exponential124

basis.125

The so-called optimized DMD (see [9]) is defined to be the solution of the following126

optimization problem:127

(2.2) min
α,B

1

2
‖X−Φ(α)B‖2F .128

The problem (2.2) is a large, nonlinear least squares problem; in particular, it is129

non-convex and oscillatory (for complex-valued α). The classical variable projection130

framework provides an efficient method for computing a (local) solution.131

2.2. Variable projection. Let132

fopt(α,B) =
1

2
‖X−Φ(α)B‖2F .133

The classical variable projection (VP) framework is based on the observation that for134

a fixed α, it is easy to optimize fopt in B. In fact, for the least squares case, we have135

a closed form expression136

(2.3) B(α) := arg min
B

fopt(α,B) = Φ(α)†X,137

where Φ(α)† denotes the Moore-Penrose pseudo-inverse of Φ(α). Let138

f̃opt(α) = min
B

fopt(α,B) :=
1

2
‖X−Φ(α)B(α)‖2F .139

The VP technique finds the minimizer of f̃opt(α) using an iterative method.140

First and second derivatives of f̃ with respect to α are easily computed [6]:141

(2.4)
∇αf̃opt(α) = ∂αfopt|α,B(α)

∇2
αf̃opt(α) =

[
∂2αfopt − ∂α,Bfopt(∂2Bfopt)−1∂B,αfopt

]∣∣∣
α,B(α)

.
142

These formulas allow first- and second-order methods to be directly applied to f̃opt,143

including steepest descent, BFGS, and Newton’s method. The matrix B(α) is up-144

dated every time α changes. Gauss-Newton and Levenberg-Marquardt (LM) have145

been classically used for exponential fitting; these methods do not use the Hessian146

in (2.4), opting for simpler approximations. The method was used for exponential147

fitting by [16].148

While VP originally referred to least-squares projection (using the closed-form149

solution B(α) in (2.3)), follow-up work considered more general loss functions, using150

the term projection to refer to partial minimization [3, 2].151

For practitioners, the optimized DMD may be less familiar than exact DMD [30].152

We favor the optimized DMD for its performance on data with additive noise (see [4])153

and its flexibility. In particular, the optimized formulation enables the contributions154

of the current work. For a review of the DMD and its applications, see [30] and [22].155

2.3. Robust Formulations. The optimized DMD problem (2.2) is formulated156

using the least-squares error norm, which is equivalent to assuming a Gaussian model157

on the errors between predicted and observed data:158

X = Φ(α)B + ε, ε ∼ N(0, σ2I).159
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Fig. 1. Gaussian (black dash) and Huber (red solid) Densities, Negative Log Likelihoods, and
Influence Functions.

This error model, and the corresponding formulation, are vulnerable to outliers in the160

data. Both DMD and optimized DMD are known to be sensitive to outliers, so in161

practice data are ‘pre-cleaned’ before applying these approaches.162

In many domains, formulations based on robust statics have become the method163

of choice for dealing with contaminated data. Two common approaches are164

• to replace the LS penalty with one that penalizes deviations less harshly and165

• to solve an extended problem that explicitly identifies outliers while fitting166

the model.167

The first approach, often called M-estimation [20, 24], is illustrated in Figure 1. Re-168

placing the least squares penalty by the Huber penalty169

ρ(z) =

{
1
2 |z|2 if |z| ≤ κ
κ|z| − 1

2κ
2 if |r| > κ

170

corresponds to choosing the solid red penalty rather than the dotted black least171

squares penalty in the center panel of Figure 1. This corresponds to modeling er-172

rors ε using the density exp(−ρ), which has heavier tails than the Gaussian (see left173

panel of Figure 1). Heavier tails means deviations (i.e. larger residuals) are more174

likely than under the Gaussian model, and so observations that deviate from the175

norm have less influence, i.e. effect on the fitted parameters (α,B) than under the176

Gaussian model (see right panel of Figure 1). The M-estimator-DMD problem can177

be written as178

min
α,B

n∑
j=1

ρ(X·j −Φ(α)B·j) :=

n∑
j=1

ρj(α,B),179

where the sum is run across columns, denoted X·j and B·j .180

Another approach, called trimmed estimation, builds on M-estimation by cou-181

pling explicit outlier identification/removal with model fitting. The trimmed DMD182

formulation for any penalty ρ is given by183

min
α,B

h∑
l=1

ρjl(α,B),(2.5)184

185

where ρj1(α,B) ≤ · · · ≤ ρjh(α,B) are the first h order statistics of the objective values186

and {j1, . . . , jh} ⊆ {1, . . . , n}. Interpreting the loss ρj as the negative log likelihood187

of the jth observed column, it is clear that trimming jointly fits a likelihood model188

while simultaneously eliminating the influence of all low-likelihood observations. An189

equivalent formulation to (2.5) replaces the order statistics with explicit weights190

min
α,B,w

n∑
j=1

wjρj(α,B), 0 ≤ wj ≤ 1, 1ᵀw = h.(2.6)191

192
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The reader should verify that (2.6) and (2.5) are equivalent.193

Trimmed M-estimators were initially introduced by [26] in the context of least-194

squares regression. The author’s original motivation was to develop linear regression195

estimators that have a high breakdown point (in this case 50%) and good statistical196

efficiency (in this case n−1/2)2. For a number of years, the difficulty of efficiently197

optimizing trimmed problems limited their application. However, recent work has198

made it possible to efficiently apply trimming to general models [33, 1]. We show how199

to incorporate trimming into the robust DMD framework below.200

2.4. Regularization. Optimized DMD allows prior knowledge to be incorpo-201

rated into the optimization formulation, either through constraints on variables, or202

regularization terms.203

For example, in exponential fitting problems like the DMD, the real parts of204

the α parameters affect the ability of the discovered model to forecast because they205

determine the exponential growth rate of Φ(α). A natural regularization is to place206

an upper bound on the real parts of α, i.e. to impose the constraint real(α) ≤ γ with207

γ chosen by the user.208

We write the constraint as follows:209

(2.7) r(α) =

{
0 if real(α) ≤ γ
∞ if real(α) > γ.

210

This is a simple convex function but it is not smooth. Fortunately, there are simple211

iterative algorithms based on proximal operators which can handle such penalties.212

Definition 2.1 (Proximal Operator). A proximal operator can be associated to213

any proper, lower semi-continuous, convex function defined on a Hilbert space V. Let214

ϕ be such a function. Then,215

proxϕ(v) = arg min
x∈V

(
ϕ(x) +

1

2
‖x− v‖22

)
.

While the evaluation of the proximal operator entails an optimization problem,216

there are many common and important penalties for which there is an explicit, easy-217

to-evaluate formula. The penalty r above admits a trivial proximal operator (see218

[10]): entry-wise projection of each component of α onto the shifted left half-plane219

in C. Because this operation is simple to compute, we call r(α) a “prox-friendly”220

regularizer. The VP framework proposed in this manuscript can incorporate both221

prox-friendly and smooth regularizers on the α parameters; see subsection 3.3 for222

details.223

Constraints and penalties can also be imposed on the matrix B. We assume that224

only smooth, separable regularization penalties can be used; and in this case, the225

regularization is added to the function g.226

2.5. Problem formulation. Let q(B) and r(α) be convex regularization terms.227

We formulate the general robust DMD problem as follows:228

(2.8) min
α,B,w

f(α,B,w) := g(α,B,w) + r(α) + s(w) ,229

2Breakdown refers to the percentage of outlying points which can be added to a dataset before
the resulting M-estimator can change in an unbounded way.
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where r(α) encodes optional regularization functions (or constraints) for α (see Sec-230

tion 2.4) and231

(2.9) g(α,B,w) =

n∑
j=1

wjρ (X·j −Φ(α)B·j) + q(B·j)232

with ρ any differentiable penalty, q(B·j) any regularizer for columns of B, and s(w)233

encoding the capped simplex constraints:234

(2.10) s(w) =

{
0 if 0 ≤ wj ≤ 1, 1ᵀw = h

∞ else.
235

These constraints are explained in Section 2.3. The w variables select the best-fit236

h columns of the data, and only use those values to update α. Since each wj ∈237

[0, 1] rather than {0,1}, the solutions do not have to be integral. However, for any238

fixed (B,α) there exists a vertex solution, since the subproblem in w with the other239

variables fixed is a linear program. The function s(w) admits a simple proximal240

operator, which is the projection onto the intersection of the h-simplex with the unit241

cube3. Setting h = n forces wj = 1 for each column, eliminating trimming completely,242

and reducing (2.8) to a simpler regularized M-estimation form of DMD.243

Our numerical examples use constraints for α, but do not regularize B, that is,244

q(B·j) ≡ 0. However, we consider separable penalties q in the algorithmic description245

to preserve the generality of (2.8).246

Remark 2.2. Observe that (2.8) captures the standard optimized DMD, where247

ρ(·) = ‖ · ‖2F , q(B·j) ≡ 0, r(α) ≡ 0 and h = n.248

3. Methods. In this section, we develop numerical approaches for (2.8). While249

(2.8) is in principle a non-linear and non-convex problem in nk+ k+ n variables, the250

variable projection framework decouples this into relatively simple convex optimiza-251

tions over nk of these variables, the ‘inner’ problem, and a non-linear, non-convex252

value function optimization problem in the remaining n + k variables, the ‘outer’253

problem. We detail this in subsection 3.1, including sufficient conditions on the reg-254

ularizers and penalties in the robust formulation. In subsection 3.2, we provide some255

explicit formulas for the gradients of the relevant objective functions. Suitable algo-256

rithms for both smooth and non-smooth regularizers are presented in subsection 3.3.257

For large n and m, the simple, convex optimizations which arise can become a com-258

putational bottleneck. In subsection 3.4, we develop a stochastic variance reduction259

(SVRG) algorithm that accelerates each iteration for the ‘outer’ problem by exploit-260

ing the structure of the ‘inner’ problem, enabling scalability of the approach to large261

problems. Specifically, only a subset of the ‘inner’ problems need to be evaluated at262

each iteration to get noisy gradients of the outer problem. Numerical studies illus-263

trating the utility of both robust DMD formulations, and of the SVRG acceleration,264

are presented later on in Section 4.265

3.1. Variable projection. To compute the robust optimized DMD, we apply266

the variable projection (VP) technique to the optimization problem (2.8). Define the267

reduced function f̃ and implicit solution B(α) by268

(3.1)
f̃(α,w) = min

B
f(α,B,w) ,

B(α,w) = arg minBf(α,B,w) ,
269

3This set is called the capped simplex, and admits fast projections [1].
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where f is as defined in (2.8).270

We refer to partially minimizing f over B ∈ Ck×n as the inner problem and min-271

imizing f̃ over α ∈ Ck and w ∈ Rn as the outer problem. We leave the trimming272

parameters w as part of the outer problem to leave the inner problem as both smooth273

and convex, making it easier to develop provably convergent variable projection al-274

gorithms and their stochastic extensions. The general VP strategy is to apply an275

iterative method to the outer problem, computing a (local) minimizer of the reduced276

function f̃ . In each such iteration, we must solve the inner problem over B. When f277

is convex and smooth with respect to B, fast optimization algorithms can be applied278

to the inner problem. Moreover, the inner problem is embarrassingly parallelizable,279

as will be clear in the next subsection.280

For the outer problem, we require gradient information for f̃ with respect to α and281

w. The gradient formula (2.4) holds for a very broad problem class. For example,282

as long as f is strongly convex with respect to B, the result holds for any convex283

regularizer on B [31]. If the regularizer is finite-valued, the strong convexity of f284

with respect to B is not necessary, and we have an alternative set of conditions [25,285

Theorem 10.58]:286

1. g(α,B,w) is level-bounded in B locally uniformly in α; i.e., for any compact287

subset of α, the union of sublevel sets {B : g(α,B,w) ≤ γ} is bounded.288

2. The gradient of g(α,B,w) exists and is continuous for all (α,B,w).289

3. B(α,w) is unique.290

Several assumptions on g, Φ, and q (see (2.9)) can be made to ensure these conditions291

hold. E.g.:292

• If g is differentiable, convex, and has compact level sets with respect to B,293

and Φ(α) has full rank, then the result holds.294

• For any convex g, strong convexity of q also ensures the result without any295

assumptions on Φ(α).296

The gradient formula (2.4) is valid for all of the examples in the paper and takes297

the form:298

(3.2) ∇f̃(α,w) = ∂α,wf(α,B,w)|α,B(α,w),w .299

See subsection 3.2 for more explicit gradient formulas.300

Solving (2.8) requires optimization procedures for both the inner and outer prob-301

lems. We outline some deterministic algorithms in the subsection 3.3 and then present302

a a stochastic variance reduction algorithm in subsection 3.4.303

3.2. Gradient formulas. In order to apply the algorithms proposed in this304

manuscript, we need to compute the gradient of the penalty function (2.9) with respect305

to α, B, and w.306

In all of the optimization methods, we treat the real and imaginary components307

of αj and Bji as independent, real-valued parameters. However, for the sake of308

compactness, we write derivative formulas in the Wirtinger sense, computing partial309

derivatives with respect to the complex variables. Consider a complex number z =310

x+ iy. The derivatives for the real components can be recovered from the formulas311

(3.3)
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
.312

Definition 3.1 (Wirtinger derivative). Let ψ(z) be a function of z which can be313

written as ψ(z) = Ψ(z, z̄) where Ψ is differentiable with respect to both z and z̄. The314
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Wirtinger derivative of ψ is then the partial derivative of Ψ with respect to z, treating315

z̄ as a constant.316

For example, the Huber penalty may be written as317

ρ(z) = P (z, z̄;κ) =

{
κ
√
zz̄ − 1

2κ
2, |z| ≥ κ

1
2zz̄, |z| < κ

.318

The Wirtinger derivative of the Huber penalty is then319

ρ′(z) =
∂

∂z
P (z, z̄;κ) =


κz̄

2
√
zz̄
, |z| < κ

1
2 z̄, |z| ≥ κ

.320

Once the derivative of ρ is known, then the gradients of g with respect to α, w,321

and B can then be computed using the chain rule. Gradients of the reduced function f̃322

can then be obtained via (3.2). For notational convenience, we define a matrix-valued323

penalty function324

ρ(A) :=

 ρ(A1,1) · · · ρ(A1,n)
...

. . .
...

ρ(Am,1) · · · ρ(Am,n)

 .325

In this notation, we can write326

(3.4) g(α,B,w) = 1ᵀρ(X−Φ(α)B)w + q(B) ,327

where328

q(B) =

n∑
j=1

q(B·j) .

We then have:329

(3.5)

∇αg(α,B,w) = −diag [BDiag(w)ρ′(X−ΦB)ᵀ(Diag(t)Φ)]

∇Bg(α,B,w) = −Φᵀρ′(X−ΦB)Diag(w) +∇q(B)

∇B·jg(α,B,w) = −Φᵀρ′(X·j −ΦB·j)wj +∇q(B·j)
∇wg(α,B,w) = ρ(X−ΦB)ᵀ1,

330

where we define331

diag(A) :=


a11
...
...
ann

 , Diag(a) :=


a1 0 . . . 0

0 a2
. . .

...
...

. . .
. . . 0

0 · · · 0 an

 .332

3.3. Deterministic algorithms. For the algorithms below, we assume that g333

in (2.8) is convex with respect to B; recall that g is continuously differentiable with334

respect to B, α, and w. We note that the function f may not necessarily be smooth,335

depending on the regularizer r(α).336
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Observe that the inner problem decouples into n independent subproblems of337

dimension m:338

(3.6) B·j(α,w) = arg minb wjρ (X·j −Φ(α)b) + q(b), j = 1, . . . , n.339

We use BFGS to solve each of these subproblems, since the dimension of each problem340

is relatively small and BFGS gives a superlinear convergence rate while using only341

gradient information. Further, the values of the vectors bj are independent of each342

other so that these solves can be performed in parallel.343

The selection of the outer solver depends on the regularizers. When r in (2.8)344

is continuously differentiable, we can also use BFGS as our outer solver, resulting345

in Algorithm 3.1. When r is non-smooth but admits an efficient prox operator, a346

first order method such as the proximal gradient method or its accelerations, such347

as FISTA [5], can be used instead; see Algorithm 3.2 for a simple prox-gradient348

implementation. Proximal gradient requires a rule for selecting a step size, ηα. We349

use a backtracking line search in practice but other methods are available.350

Algorithm 3.1 VP using BFGS for outer problem (smooth r).

Input: α0, B0, w0, H0
α = I, ν = 0.

1: while not converged do
2: for j = 1, . . . , n do
3: Bν+1

·j ← arg min
b
wνj ρ (X·j −Φ(αν)b) + q(b)

4: wν+1 ← weights update
5: fνα ← f(αν ,Bν+1,wν+1)
6: gνα ← ∇αf(αν ,Bν+1,wν+1)
7: if ν ≥ 1 then
8: sν ← fνα − fν−1α

9: yν ← gνα − gν−1α

10: βν ← (〈sν , yν〉)−1
11: Hν

α ← [I − βν(sν)(yν)ᵀ]Hν−1 [I − βν(yν)(sν)ᵀ] + β(sν)(sν)ᵀ

12: αν+1 ← LineSearch(αν − ηαHν
αg

ν
α)

13: ν ← ν + 1

Output: αν , Bν .

Algorithm 3.2 VP using proximal gradient for outer problem (prox-friendly r).

Input: α0, B0, w0, ν = 0.
1: while not converged do
2: for j = 1, . . . , n do
3: Bν+1

·j ← arg min
b
wνj ρ (X·j −Φ(αν)b) + q(b)

4: wν+1 ← weights update
5: αν+1 ← proxηαr

(
αν − ηα∇αf(αν ,Bν+1,wν+1)

)
6: ν ← ν + 1

Output: αν , Bν .

There are different ways to update the weights w, see line 4 in Algorithms 3.1351

and 3.2. We let ν denote the iteration counter. Define352

ρνj = ρ
(
X·j −Φ(αν)bν+1

j

)
.353
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The objective with respect to w is given by354

min
w

n∑
j=1

wjρ
ν
j + s(w),355

where s encodes the weight constraints (2.10). The simplest update rule is to set356

wj = 1 if ρνj is one of the h smallest, and 0 otherwise [33]; this corresponds to partial357

minimization in w at every step. A less aggressive strategy is to use proximal updates358

on w,359

wν+1 = proxηws
(
wν − ηw∇wf(αν ,Bν+1,wν)

)
360

where any step size ηw > 0 can be used [1]. We use the former simple rule as the361

default in the algorithm. When h = n, trimming is turned off, and all weights are362

identically equal to 1.363

Algorithm 3.3 SVRG for DMD

Input: α0, B0, w0

1: Initialize ν = 0, ζj = ∇fj
(
α0,w0

)
for j = 1, 2, . . . , n, and ζ = 1

n

∑n
j=1 ζj

2: while not converged do
3: Uniformly sample Iν ⊂ {1, 2, . . . , n}, such that |Iν | = τ
4: Sample Jν ∈ {0, 1}, such that P (J = 1)� P (J = 0).
5: for j ∈ Iν do
6: Bν+1

·j ← arg min
b
wνj ρ(X·,j −Φ(αν)b) + q(b)

7: ζ+j ← ∇g̃j (αν ,w)

8: if J = 1 then
9: wν+1 ← weights update

10: else
11: wν+1 ← wν

12: αν+1 ← proxηαr

(
αν − ηα

[
1
τ

∑
j∈Iν

(
ζ+j − ζj

)
+ ζ
])

13: ηα ← step size update
14: ζj ← ζ+j for j ∈ Iν
15: ζ ← 1

n

∑n
j=1 ζj

16: ν ← ν + 1

Output: αν , Bν

3.4. A scalable stochastic algorithm. In DMD applications, n represents the364

number of spatial variables, and is often much larger than the dimension of the outer365

problem, k. In step 2 of Algorithms 3.1 and 3.2, we must solve n subproblems of366

dimension k for which gradient evaluations have O(mk) cost (see (3.5)). For large n367

and m, this is a computational bottleneck.368

We use stochastic methods to scale the approach. The basic idea is to partially369

minimize over a random sample of τ columns of B, with τ � n; the resulting (scaled)370

gradient is an unbiased estimate of ∇αf̃ . More precisely, define371

B·j(α,w) = arg minbwjρ (X·j −Φ(α)b) + q(b),372

g̃j(α,w) = wjρ(X·j −Φ(α)B·j(α,w)) + q(B·j(α,w)).373374

Then we have375

f̃(α,w) =

n∑
j=1

g̃j(α,w) + r(α) + s(w).376
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This is a classical setting for stochastic methods. In each iteration, we can use a377

subset of g̃j to calculate the approximate gradient for the smooth part of f̃ in order378

to reduce the computational burden. Here we use SVRG [21] as our stochastic solver379

for the outer problem; the full details are given in Algorithm 3.3.380

SVRG is chosen in contrast with stochastic proximal gradient (SPG). Stochastic381

proximal gradient (SPG) has no convergence theory, though it is frequently used in382

practice. A clear practical downside of using SPG is that it requires a diminishing383

step size and its performance is sensitive to parameters that guide step size selection.384

For SVRG, we may use a constant step size. Convergence of SVRG is analyzed385

for the nonconvex case, with and without trimming, by [1]. The trimming weights386

w require full passes through the data, and this is why the w update (lines 8-11387

of Algorithm 3.3) is done rarely. A numerical study showing the impact of SVRG388

compared to full gradient methods is summarized in Figure 6 of Section 4.389

Remark 3.2. This stochastic approach is an alternative to using a dimensionality390

reduction based on projecting onto SVD modes [4] or using an optimized but fixed391

subsampling of the columns [18]. With the method of Algorithm 3.3, none of the data392

is discarded or filtered by the cost reduction procedure.393

4. Synthetic examples. In this section, we demonstrate the effectiveness of394

robust penalties in handling outliers on a pair of synthetic test cases with known so-395

lution. These examples are drawn from the additive noise study of [12] and represent396

two cases in which additive noise presents a challenge: recovering purely oscillatory397

dynamics and recovering a decaying mode in a system with a growing mode. In [4],398

the optimized DMD was demonstrated to improve significantly over the biases of the399

exact DMD for the case of additive Gaussian noise. Here, we show that the robust400

DMD can also handle significant outliers. We also demonstrate the effectiveness of401

the SVRG-based randomized algorithm, Algorithm 3.3, by comparing its performance402

on a medium-sized problem with the performance of the proximal-gradient-based al-403

gorithm, i.e. Algorithm 3.2, and the performance of SPG.404

4.1. A simple periodic example. Let x(t) be the solution of a two dimensional405

linear system with the following dynamics406

(4.1) ẋ =

(
1 −2
1 −1

)
x .407

We use the initial condition x(0) = (1, 0.1)ᵀ and take snapshots408

xj = x(j∆t) + σgj + µsj ,409

where ∆t = 0.1, σ and µ are prescribed noise levels, gj is a vector whose entries410

are drawn from a standard normal distribution, and sj is a vector whose entries are411

the product of a Bernoulli trial with small expectation p and a standard normal412

(corresponding to sparse noise). The snapshots are therefore corrupted with a base413

level of noise σ and sparse “spikes” of size µ with firing rate p. A sample time series414

for this example can be found in Figure 2.415

The k = 2 eigenvalues of the system matrix in (4.1) are ±i, corresponding to416

sinusoidal dynamics in time. In Figure 3, we plot the median (over 200 random417

trials) of the l1-norm error in the approximations of these eigenvalues using three418

different methods: the exact DMD of [30]; the optimized DMD as defined in (2.2);419
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Fig. 2. Sample time series of x1(t) and x2(t) for the simple periodic example, with background
noise of size σ = 10−2 and spikes of size µ = 1 added at p = 5% of the snapshots for each channel.
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Fig. 3. Median error in the computed eigenvalues over 200 runs. The background noise σ
varies while the size of the spikes is fixed at µ = 1 and the firing rate is fixed at p = 5%.

and the robust DMD as defined in (2.8), with ρ the Huber norm and h = n = 2420

(no trimming). Each trial consists of the first 128 snapshots with additive noise. We421

bound the maximum exponential growth rate by setting γ = 1 in the regularizer r(α)422

(see (2.7)). The level of the background noise, σ, varies over the experiments and the423

size and firing rate of the spikes are fixed at µ = 1 and p = 5%, respectively. We set424

the Huber parameter using knowledge of the problem set-up, i.e. κ = 5σ, but in a real425

data setting this parameter would have to be estimated or chosen adaptively. While426

the optimized DMD improves over the exact DMD, the error does not decrease as427

the level of the background noise decreases. We therefore see the effect of the sparse428

outliers using the optimized DMD. For the robust formulation, on the other hand,429

the accuracy of the eigenvalues is determined by the level of the background noise, so430

that the outliers are not biasing the computed eigenvalues.431

4.2. An example with hidden dynamics. In the case that a signal contains432

some rapidly decaying components it can be more difficult to identify the dynamics,433

particularly in the presence of sensor noise [12]. We consider a signal composed of434

two sinusoidal forms which are translating, with one growing and one decaying, i.e.435
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(a) (b)

(c) (d)

Fig. 4. A surface plot of the data for the hidden dynamics example and surface plots of a
sample of each type of noise we consider.

(4.2) x(y, t) = sin(k1y − ω1t)e
γ1t + sin(k2y − ω2t)e

γ2t ,436

where k1 = 1, ω1 = 1, γ1 = 1, k2 = 0.4, ω2 = 3.7, and γ2 = −0.2 (following settings437

used by [12]). This signal has k = 4 continuous time eigenvalues given by γ1 ± iω1438

and γ2 ± iω2. We set the domain of y to be [0, 15] and use 300 equispaced points,439

yj , to discretize. For the time domain, we set ∆t = π/(28 − 2) so that the number440

of snapshots we use, m = 27, covers [0, π/2]. We denote the vector of discrete values441

x(yj , t) by x(t). See Figure 4(a) for a surface plot of this data.442

We consider three different types of perturbations of the data. The first perturba-443

tion adds background noise and spikes, as in the previous example, i.e. the snapshots444

are given by445

x
(1)
j = x(j∆t) + σgj + µsj ,446

where σ and µ are prescribed noise levels, gj is a vector whose entries are drawn from447
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a standard normal distribution, and sj is a vector whose entries are the product of a448

Bernoulli trial with small expectation p and a standard normal. See Figure 4(b) for a449

sample plot of this “sparse noise” pattern. The second perturbation we consider adds450

background noise and spikes which are confined to specific entries of xj , i.e.451

x
(2)
j = x(j∆t) + σgj + µs̃j ,452

where gj , σ, and µ are as above and the s̃j are sparse vectors which have the same453

sparsity pattern for all j and nonzero entries drawn from a standard normal distribu-454

tion (this corresponds to having a few broken sensors recording the data). We plot a455

sample of this “broken sensor” noise pattern in Figure 4(c). The third perturbation456

we consider adds background noise and a localized bump to the data, i.e.457

[
x
(3)
j

]
i

= x(yi, j∆t) + σN (0, 1) +A exp

(
−
(
yb − yi
w∆y

)2

−
(
tb − j∆t
w∆t

)2
)
,458

where σ is as above, N (0, 1) denotes a number drawn from the standard normal dis-459

tribution, A determines the maximum height of the bump, w determines the “width”460

of the bump, and yb and tb determine the center of the bump in space and time (this461

corresponds to having some non-exponential dynamics in the data). In Figure 4(d),462

we plot a sample of this “bump” noise pattern.463

In Figure 5, we plot the median (over 20 random trials) of the l1-norm error in464

the approximations of the eigenvalues using four different methods: the exact DMD465

of [30]; the optimized DMD as defined in (2.2); the robust DMD as defined in (2.8),466

with ρ the Huber norm and h = n = 300 (no trimming); and the robust DMD with467

ρ the standard Frobenius norm and h = 0.8n = 240 (trimming). Each trial consists468

of the first 128 snapshots with additive noise. We bound the maximum exponential469

growth rate by setting γ = 2 in the regularizer r(α) (see (2.7)). The level of the470

background noise, σ, varies over the experiments. For the “sparse noise” and “broken471

sensor” snapshots, the size of the spikes is fixed at µ = 1 and the density is fixed472

at p = 5%, i.e. 5% of the entries are corrupted for the “sparse noise” example and473

5% of the sensors are corrupted for the “broken sensor” example. For the “bump”474

snapshots, the height of the bump is fixed at A = 1 and the width at w = 10. We475

set the Huber parameter using knowledge of the problem set-up, i.e. κ = 5σ, but in476

a real data setting this parameter would have to be estimated or chosen adaptively.477

With sparse noise, as in Figure 5(a), the results for the exact DMD, optimized478

DMD, and Huber norm-based robust DMD are consistent with the simple periodic479

example. The Huber norm formulation is the only one which is able to take advantage480

of the lower levels of background noise. The trimming formulation provides very little481

advantage for this example, as any sensor can be affected by the outliers. In contrast,482

we see that the trimming formulation is able to out-perform the Huber formulation for483

the broken sensor example (see Figure 5(b)), as the algorithm is able to adaptively484

remove the broken sensors from the data. In Figure 5(c), we plot the results for485

the bump data, which display some interesting behavior. Here, the optimized DMD486

performs worse than it did for the other noise sources, perhaps due to an attempted487

fit of the smooth bump. For all but the highest background noise level, the Huber488

and trimming formulations show a significant advantage over the optimized DMD489

and exact DMD, with the trimming formulation performing the best. The trimming490

This manuscript is for review purposes only.



16 T. ASKHAM, P. ZHENG, A. ARAVKIN, J.N. KUTZ

10 5 10 4 10 3 10 2 10 1

background noise

10 6

10 5

10 4

10 3

10 2

10 1

er
ro

r 
in

 r
ec

ov
er

ed
 e

ig
en

va
lu

es

Sparse Large Deviations

Exact DMD
Optimized DMD
Robust DMD (Huber)
Robust DMD (Trimming)

10 5 10 4 10 3 10 2 10 1

background noise

10 6

10 5

10 4

10 3

10 2

10 1

er
ro

r 
in

 r
ec

ov
er

ed
 e

ig
en

va
lu

es

Broken Sensors

Exact DMD
Optimized DMD
Robust DMD (Huber)
Robust DMD (Trimming)

(a) (b)

10 5 10 4 10 3 10 2 10 1

background noise

10 6

10 5

10 4

10 3

10 2

er
ro

r 
in

 r
ec

ov
er

ed
 e

ig
en

va
lu

es

Confounding Bump

Exact DMD
Optimized DMD
Robust DMD (Huber)
Robust DMD (Trimming)

(c)

Fig. 5. Median error in the computed eigenvalues over 20 runs. The background noise σ
varies while the size of the spikes is fixed at µ = 1 and the firing rate is fixed at p = 5% for the
“sparse noise” and “broken sensor” examples and the height is fixed at A = 1 and the width at
w = 10 for the “bump” example.

formulation therefore presents an attractive solution for data with unknown, localized491

deviations from the exponential basis of the DMD, especially given that the inner492

problem for trimming with the Frobenius penalty can be solved rapidly. Of course,493

trimming can be combined with a Huber (or other robust) penalty for increased494

robustness to outliers.495

4.3. Scalability demonstration. As noted in subsection 3.4, the inner problem496

becomes a computational bottleneck for large dimensional problems (large n and m).497

Algorithm 3.3 proposes an acceleration where noisy gradient values are obtained for498

the outer problem by only solving a fraction of the inner subproblems at each step.499

In Figure 6, we solve a synthetic problem with dimension m = 512, n = 1000,500

and k = 3 using 3 different methods: proximal gradient (PG) with backtracking line501

search, as in Algorithm 3.2; stochastic proximal gradient (SPG); and the proposed502

SVRG algorithm. As noted above, SPG requires a diminishing step size; we choose503

the attenuation schedule504

ηνα =
η0α

floor(ν/K) + 1
,505

with η0α = 10−7 and K = 100. For SVRG, we use a constant step size η0α, same as506

our choice for SPG, and set the parameter τ = 10. Comparing the algorithms by507
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Fig. 6. Comparative performance of SVRG, Stochastic Proximal Gradient (SPG) method and
Proximal Gradient (PG) method using the same data set. PG is a robust method but requires many
subproblem solves at each iteration (when using a line search). Both SPG and SVRG are much
more efficient at the start, but SPG can easily stagnate; SVRG has the best theoretical rates and
empirical performance with respect to the requisite number of subproblem solves.

the total number of inner subproblems solved (number of optimizations to compute508

bj(α,w) for some j) we see that SVRG is the most efficient method and is less noisy509

than SPG (Figure 6).510

5. Conclusion and future directions. We have presented an optimization511

framework and a suite of numerical algorithms for computing the dynamic mode de-512

composition with robust penalties and parameter constraints. This framework allows513

for improved performance of the DMD in a number of settings. In the presence of514

sparse noise or non-exponential structure, the use of robust penalties significantly de-515

creases the bias in the computed eigenvalues. When using the DMD to perform future516

state prediction, adding the constraint that the eigenvalues lie in the left half-plane517

increases the stability of the extrapolation. The algorithms presented are capable of518

solving small to medium-sized problems in seconds on a laptop (e.g. the problem of519

size m = 512, n = 1000, and k = 3 of subsection 4.3 takes a few seconds on a laptop)520

and scale well to higher-dimensional problems due to their intrinsic parallelism and521

the efficiency of the SVRG approach. In contrast with previous approaches, the SVRG522

increases efficiency without throwing out data or incidentally filtering it. For DMD523

practitioners, these features of the new framework and algorithms presented here will524

enable the analysis of larger, noisier, and more complex data sets than previously pos-525

sible. The software used for these calculations is available in the open-source package526

RobustDMD4.527

The present work can be extended in a number of ways. Because the inner solve528

completely decouples over the columns of X and B, the algorithms presented above529

immediately generalize to data-sets with missing entries and even data which are col-530

lected asynchronously across sensors. While the global nature of an optimized DMD531

fit has advantages in terms of the quality of the recovered eigenvalues, it implicitly532

rules out process noise. However, including process noise or a known forcing term533

4https://github.com/UW-AMO/RobustDMD.jl
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would be useful in many applications. Incorporating such terms into this optimiza-534

tion framework is ongoing work and results will be reported at a later date. We also535

note that much of the above applies to dimensionality reduction using any parame-536

terized family of time dynamics, not just exponentials. For such an application, many537

of the algorithms above could be easily adapted, so long as gradient formulas are538

available.539
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