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Abstract We present a novel integral representation for the biharmonic Dirichlet
problem. To obtain the representation, the Dirichlet problem is first converted into
a related Stokes problem for which the Sherman-Lauricella integral representation
can be used. Not all potentials for the Dirichlet problem correspond to a potential
for Stokes flow, and vice-versa, but we show that the integral representation can be
augmented and modified to handle either simply or multiply connected domains.
The resulting integral representation has a kernel which behaves better on domains
with high curvature than existing representations. Thus, this representation results
in more robust computational methods for the solution of the Dirichlet problem of
the biharmonic equation and we demonstrate this with several numerical examples.
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1 Introduction and problem formulation

A variety of problems of mathematics and physics require the computation of a
biharmonic potential subject to Dirichlet boundary conditions. The pure bend-
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ing problem for an isotropic and homogeneous thin clamped plate is a classical
application. Another application is the computation of a C1 extension of a given
function from its domain of definition to a larger, enclosing domain (we discuss
these applications further in section 2.1).

The Dirichlet problem is given as follows. For a domain D with boundary Γ ,
find a function w such that

∆2w = 0 in D , (1)

w = f on Γ , (2)

∂w

∂n
= g on Γ, (3)

where f and g are continuous functions defined on Γ .

The use of standard finite difference methods for the solution of (1) – (3)
is complicated greatly by the fact that the differential equation is fourth order.
For instance, the resulting linear system for a discretization with N nodes in each
dimension would have a condition number proportional to N4, which poses several
concerns for obtaining high accuracy solutions for large problems.

Integral equation methods, on the other hand, have many advantages for such
problems. Because (1) – (3) is homogeneous, the resulting integral equation is
defined on the boundary alone and there is a reduction in the dimension of the
problem. Complex geometries are handled more easily by an integral equation
and, with appropriate choice of representation, the discrete problem tends to be
as well conditioned as the underlying physical problem, independent of the system
size [13]. One challenge for integral equation methods is that the resulting linear
systems are dense. However, there are many well developed fast algorithms for the
solution of these systems, most descending from the fast multipole method (FMM)
[9].

Integral representations for the solution of (1) – (3) have been developed pre-
viously. In particular, the problem is addressed in Peter Farkas’ thesis [6] and the
method presented there has been extended to three dimensions in [11]. The in-
tegral kernels derived in [6] are taken to be linear combinations of derivatives of
the fundamental solution of the biharmonic problem. Assuming the boundary is
a smooth curve, the combinations are chosen to maximize the smoothness of the
integral kernel as a function on the boundary (for smooth domains). However, the
integral kernels derived for (1) – (3) have a leading order singularity of r−2 on a
domain with a corner. Because of this singularity, designing quadrature rules for
discretizing the integral equation is difficult for domains with corners. Further-
more, the resulting discretized system has large condition numbers for domains
whose boundaries have high curvature.

For the related problem of two dimensional steady Stokes flow, the stream
function formulation results in a biharmonic equation with the gradient of the
biharmonic potential specified on the boundary. Let w be the stream function for
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Stokes flow with no slip boundary conditions, then

∆2w = 0 in D , (4)

∂w

∂τ
= f on Γ , (5)

∂w

∂n
= g on Γ , (6)

for appropriately chosen functions f and g. Over the past century, much work
has been done to develop integral representations for the biharmonic problem in
this setting, as well as the similar setting of the Airy stress function formulation
of the plane theory of elasticity [8,16,17,14]. The representations given in the
above references typically have more benign singularities than the representation
presented in [6]. In particular, the representation used in this paper, taken from
[8,16], has a leading order singularity of r−1 on domains with corners. Moreover,
this representation (and others from the above references) can be expressed in
terms of Goursat functions, allowing for a convenient representation of the stream
function. Because of these advantages, we choose to adapt the representation of
[8,16] to solve (1) – (3).

This adaptation is not immediate. First, in two dimensional Stokes flow, the
physical quantities of interest are derivatives of the biharmonic potential w and not
w itself; the representation of w from [8,16] is not necessarily single-valued. Sec-
ond, in converting the boundary conditions (2), (3) into the boundary conditions
(5), (6), the data is differentiated along the curve so that the original boundary
condition is only met up to a constant. These issues are addressed here, with par-
ticular attention paid to the case of multiply connected domains. More precisely,
we will show that the desired (and uniquely defined) potential can be expressed
in terms of (possibly) multi-valued Goursat functions.

The rest of the paper is organized as follows. In section 2, we present some
mathematical preliminaries, including the notation used throughout the paper, a
review of the Farkas integral representation, and a review of the completed layer
potential representation for solving (4) – (6) in terms of the Goursat functions.
In section 3, we explain how to adapt the Stokes layer potentials for the Dirichlet
problem, present an integral representation for solving (1) – (3), and prove the
invertibility of the resulting integral equation. We outline the numerical tools we
used to solve this integral equation and present some numerical results in section 4.
In section 5, we provide some concluding remarks and ideas for future research.

2 Preliminaries

The notation for the following concepts can be cumbersome and an attempt has
been made to stay consistent. Vector-valued quantities are denoted by bold, lower-
case letters (e.g. h), while tensor-valued quantities are bold and upper-case (e.g.
T). Subscript indices of the non-bold character (e.g. hi or Tijk) are used to denote
the entries within a vector or tensor. We use the standard Einstein summation
convention, i.e., there is an implied sum taken over the repeated indices of any
term. The vectors x and y are reserved for spatial variables in R2, while z and ξ
are reserved for spatial variables in C. We make the standard identification between
points in R2 and points in C, i.e. the point x = (x1, x2)ᵀ ∈ R2 is equivalent to
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the point z = x1 + ix2, and we switch between the two notions implicitly in much
of what follows. For integration, the symbol dS is used to denote an integral with
respect to arc length and the symbol dξ is used to denote a complex contour
integral. Script letters X , Y, and Z are reserved for Banach spaces. IX : X → X
denotes the identity operator on X .

Let D will denote a bounded, possibly multiply-connected, domain in R2 with
a smooth boundary Γ (unless otherwise noted). For a domain with N holes, we will
denote the outer boundary by Γ0 and the boundary of each hole by Γ1, . . . , ΓN ,
so that Γ = ∪Ni=0Γi. Let n(x) denote the outward unit normal and τ (x) the
positively-oriented unit tangent for x ∈ Γ . If we need to distinguish between the
exterior and interior of Γ , we will let D− = D denote the interior and D+ =
R2 \ (D ∪ Γ ) denote the exterior.

2.1 Applications of the biharmonic Dirichlet problem

Consider the pure bending of an isotropic and homogeneous thin clamped plate.
In the Kirchoff-Love theory, the vertical displacement of the plate, w, satisfies the
equations

−∆2w = q x ∈ D (7)

w = 0 x ∈ Γ (8)

∂w

∂n
= 0 x ∈ Γ, (9)

where D ⊂ R2 represents the midline of the thin plate, Γ is its boundary, and q
is the transverse load applied to the plate. Using standard techniques, the above
problem can be reduced to a homogeneous biharmonic problem of the form (1)
– (3).

In a recent paper, [1], it was shown that the solution of polyharmonic Dirichlet
problems can be used as part of the solution of inhomogeneous PDEs on complex
geometries. We will breifly review this procedure here.

Consider the Poisson equation

∆u = f x ∈ D , (10)

u = g x ∈ Γ . (11)

A particular solution, v, which satisfies (10) can be obtained from the formula

v(x) = − 1

2π

∫
Ω

log |x− y|f̃(y) dy , (12)

where Ω is some domain such that D ⊂ Ω and f̃ is a function defined on Ω which
satisfies f̃ |D = f .

There are rapid methods for evaluating the integral (12) in the case that Ω
is a box. However, it is unclear how best to define (and compute) the values of
f̃ on Ω \ D, particularly such that f̃ is smooth across the boundary of D. One
approach is to compute the extension as the solution of a homogeneous PDE on
the exterior.
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Suppose that w solves

∆2w = 0 x ∈ Ω \D
w = f x ∈ Γ

∂w

∂n
=
∂f

∂n
x ∈ Γ (13)

w = 0 x ∈ ∂Ω
∂w

∂n
= 0 x ∈ ∂Ω ,

which is a problem of the form (1) – (3). Then, setting f̃ |D = f and f̃ |Ω\D = w

makes f̃ a C1 function across Γ .
In [1], a C0 extension was computed as the solution of a Laplace problem on

Ω \ D. This was found to accelerate the convergence of the Poisson solver over
discontinuous extension (i.e. f̃ to be zero outside of D). By computing a smoother
extension, as in the solution of the problem above, the efficiency and robustness
of the Poisson solver could be further improved. For a PDE-based version of this
approach, see [20].

2.2 The Farkas integral representation

As mentioned in the introduction, there are existing integral representations for
the solution of (1) – (3). In [6], the solution is given as the sum of two layer
potentials, i.e.

w(x) =

∫
Γ

KF
1 (x,y)σ1(y) dS(y) +

∫
Γ

KF
2 (x,y)σ2(y) dS(y) , (14)

where σ1 and σ2 are unknown densities.
The integral kernels, KF

1 and KF
2 are based on derivatives of the Green’s

function for the biharmonic equation. For two points on the plane, x and y, the
Green’s function is given by

GB(x,y) =
1

8π
|x− y|2 log |x− y| . (15)

Let r = y − x and r = |y − x|. Then,

KF
1 (x,y) = GBnynyny

(x,y) + 3GBnyτyτy (x,y) , (16)

KF
2 (x,y) = −GBnyny

(x,y) +GBτyτy (x,y) . (17)

More explicitly, we have

KF
1 (x,y) =

1

π

(r · n(y))3

(r · r)2
, (18)

KF
2 (x,y) =

1

2π

(
1

2
− (r · n(y))2

r · r

)
. (19)
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On enforcing the Dirichlet boundary conditions for w, we obtain the integral
equation

(
f(x)
g(x)

)
=

∫
Γ

(
KF

11(x,y) KF
12(x,y)

KF
21(x,y) KF

22(x,y)

)(
σ1(y)
σ2(y)

)
dS(y)

+

(
1/2 0
−κ(x) 1/2

)(
σ1(x)
σ2(x)

)
,

(20)

where κ denotes the signed curvature as a function on Γ and x is a point on Γ .
The kernels are given by KF

11 = KF
1 , KF

12 = KF
2 ,

KF
21(x,y) =

(
KF

1 (x,y)
)
nx

=
1

π

(
−3

(r · n(y))2(n(x) · n(y))

(r · r)2
+ 4

(r · n(y))3(r · n(x))

(r · r)3

)
, (21)

KF
22(x,y) =

(
KF

2 (x,y)
)
nx

=
1

π

(
(r · n(y))(r · n(x))

r · r − (r · n(y))2(r · n(x))

(r · r)2

)
. (22)

For a sufficiently smooth and simply connected domain, the integral equation (20)
is invertible. The case of a multiply connected domain is not treated fully in [6],
but some of the issues are considered.

As mentioned above, the kernels KF
1 and KF

2 are constructed with the goal
that the KF

ij are as smooth as possible. Suppose that the boundary Γ is of class

Ck. Then, the kernels, KF
ij(x,y), are Ck−2 functions on the boundary for each

y ∈ Γ [6]. Therefore, on a smooth boundary, these kernels are smooth. However,
on a domain with a corner, it is clear from the formula (21) that the kernel KF

21 has
a singularity with strength r−2. This singularity, in addition to the term in (20)
which explicitly involves the curvature, makes the representation (14) unstable for
domains with high curvature (or corners).

2.3 Stokes flow in the plane

The equations of incompressible Stokes flow with no-slip boundary conditions on
a domain D with boundary Γ are

−∆u+∇p = 0 in D, (23)

∇ · u = 0 in D, (24)

u = h on Γ, (25)

where u is the velocity of the fluid and p is the pressure. Following standard
practice, the velocity u can be represented by a stream function w. Let

u = ∇⊥w =

(
∂w
∂x2

− ∂w
∂x1

)
, (26)

so that the divergence-free condition, (24), is satisfied automatically. Taking the
dot product of ∇⊥ with (23) results in a biharmonic equation for w. In particular,
w is a biharmonic function which satisfies (4) – (6) with f = −hini and g = hiτi.



Integral equation formulation of the biharmonic Dirichlet problem 7

2.4 Goursat functions

Goursat showed that any biharmonic function w can be represented by two analytic
functions φ and ψ (called Goursat functions) as

w (x1, x2) = Re (z̄φ (z) + χ (z)) , (27)

where χ
′

= ψ and z = x1+ix2 [7]. In solving equation (4) – (6), we are interested in
∂w
∂x1

and ∂w
∂x2

. Muskhelishvili’s formula [15] gives an expression for these quantites
in terms of the Goursat functions as

∂w

∂x1
+ i

∂w

∂x2
= φ (z) + zφ′ (z) + ψ (z) . (28)

We say that a pair of Goursat functions φ and ψ is equivalent to a Stokes velocity
field u if the biharmonic function w defined by (27) is such that u = ∇⊥w.

The references [8,16,17,14] give many options for the representation of φ and
ψ as layer potentials of a complex density given on the boundary of the domain.
Of computational interest, representations for φ and ψ exist such that enforcing
the boundary conditions of (4) – (6) results in an invertible second-kind integral
equation (SKIE) for the density.

2.5 Integral representations for Stokes flow in the plane

We will first present the single layer and double layer potentials of Stokes flow
in the Stokeslet/stresslet formulation, which may be more familiar. For details
concerning these ideas, see, inter alia, [18]. We will then present their equivalent
potentials in the classical Goursat function formulation. The reason for doing so
is two-fold: first, the Goursat formulation makes it more natural to evaluate the
stream function w; second, the complex variables-based Goursat formulation is
readily adaptable for efficient fast multipole methods.

2.5.1 Stokes layer potentials

The Green’s function G for the incompressible Stokes equations in free space, or
Stokeslet, is given by

Gij (x,y) =
1

4π

[
− log |x− y| δij +

(xi − yi) (xj − yj)
|x− y|2

]
i, j ∈ {1, 2} . (29)

The vector field ui = Gij (x,y) fj represents a Stokes velocity field at x due to a
point force f applied at y. For a continuous distribution of surface forces µ on a
curve Γ , the induced Stokes field, called a single layer potential, is given by

[SΓµ]i (x) =

∫
Γ

Gij (x,y)µj (y) dS(y) i = 1, 2 . (30)

The following lemma describes the behavior of the Stokes single layer potential
as a function on R2, see [18] for details.
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Lemma 1 Let SΓµ(x) denote a single layer Stokes potential of the form (30).
Then, SΓµ (x) satisfies the Stokes equations in R2\Γ and SΓµ(x) is continuous
in R2.

The Stokes single layer potential has equivalent Goursat functions, φS and ψS ,
which can be expressed in terms of complex layer potentials:

φS(z) = − 1

8π

∫
Γ

ρ (ξ) log (ξ − z) dS(ξ) +
1

8π

∫
Γ

ρ (ξ) dS(ξ) , (31)

χS(z) =
1

8π

∫
Γ

ρ (ξ) (ξ − z) [log (ξ − z)− 1] dS(ξ)

+
1

8π

∫
Γ

ξρ(ξ) log (ξ − z) dS(ξ) , (32)

ψS(z) = − 1

8π

∫
Γ

ρ (ξ) log (ξ − z) dS(ξ)− 1

8π

∫
Γ

ξρ (ξ)

ξ − z dS(ξ) , (33)

where z = x1 + ix2, ξ = y1 + iy2, and ρ = µ2 − iµ1. The stream function wS
corresponding to this Goursat function pair is then

wS(z) = Re

[
1

4π

∫
Γ

Re
[
(ξ − z)ρ (ξ)

]
log (ξ − z) dS(ξ)

− 1

8π

∫
Γ

ρ (ξ) (ξ − z) dS(ξ) + z
1

8π

∫
Γ

ρ (ξ) dS(ξ)

]
=: SwΓ ρ .

(34)

Note that, the velocity field associated with the stream function wS is given by

∇⊥wS (z) = ∇⊥SwΓ ρ (z) = SΓµ (x) . (35)

Another quantity of physical interest in Stokes flow is the stress tensor σ; for
a Stokes velocity field u and pressure p, it is given by

σij = −pδij +

(
∂ui
∂xj

+
∂uj
∂xi

)
. (36)

The stress tensor T, or stresslet, associated with the Green’s function G is given
by

Tijk (x,y) = − 1

π

(xi − yi) (xj − yj) (xk − yk)

|x− y|4
. (37)

The vector field ui = Tijk(y,x)nkfj represents the velocity field resulting from
a stresslet with strength oriented in the direction n at y. For a distribution of
stresslets µ on a curve Γ , the induced Stokes field, called a double layer potential,
is given by

[DΓµ]i (x) =

∫
Γ

Tijk (y,x)nk (y)µj (y) dS(y) . (38)

The following lemma describes the behavior of the Stokes double layer potential
as a function on R2, see [18] for details.
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Lemma 2 Let Γ be a curve, D+ denote the exterior of the curve, D− denote
the interior, DΓµ (x) denote a double layer Stokes potential of the form (38),
and x0 ∈ Γ . Then, DΓµ (x) satisfies the Stokes equations in R2\Γ and the jump
relations:

lim
x→x0

x∈D±
[DΓµ]i (x) = ±1

2
µi (x0) +

∮
Γ

Tj,i,k (y,x0)nk (y)µj (y) dS(y) (39)

=: ±1

2
µi(x0) +

[
DPVΓ µ

]
i
(x0) . (40)

In the above,
∮

denotes a Cauchy principal value integral and DPV
Γ µ denotes the

double layer potential with the integral taken in the principal value sense.

The double layer potential above has equivalent Goursat functions, φD and
ψD, which can be expressed in terms of complex layer potentials:

φD(z) = − 1

4πi

∫
Γ

ρ (ξ)

ξ − z dξ , (41)

χD(z) =
1

4πi

∫
Γ

(
ρ (ξ)dξ + ρ (ξ) dξ

)
log (ξ − z) +

1

4πi

∫
Γ

ξρ (ξ) dξ

ξ − z , (42)

ψD(z) = − 1

4πi

∫
Γ

ρ (ξ)dξ + ρ (ξ) dξ

ξ − z +
1

4πi

∫
Γ

ξρ (ξ) dξ

(ξ − z)2
, (43)

where z, ξ, and ρ are as above. The stream function wD corresponding to this
Goursat function pair is then

wD(z) = Re

[
1

4πi

∫
Γ

ξ − z
ξ − z ρ (ξ) dξ +

1

4πi

∫
Γ

(
ρ (ξ)dξ + ρ (ξ) dξ

)
log (ξ − z)

]
=: DwΓ ρ .

(44)

As before, the velocity field associated with the stream function wD is given by

∇⊥wD (z) = ∇⊥DwΓ ρ (z) = DΓµ (x) . (45)

2.5.2 The completed double layer representation for Stokes flow

Using the layer potentials described above, we can represent the solution of (4)−
− (6), or equivalently the system (23), (24), and (25), in terms of a density µ
given on the boundary of the domain. The completed double layer representation
[16] for the velocity is

u(x) = SΓµ(x) + DΓµ(x) + WΓµ , (46)

where WΓµ =
∫
Γ
µ dS, and the representation of an equivalent pair of Goursat

functions, giving a stream function w, can be inferred from the formulas of the
previous subsection. When the no-slip boundary conditions are enforced for this
representation, the result is an invertible SKIE for the density µ. The reader
can refer to [16] for a detailed discussion of the Fredholm alternative for this
representation. We summarize it as
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Lemma 3 Let u be defined as in (46) and x0 ∈ Γ . Then

lim
x→x0

x∈D±
u(x) = ±1

2
µ(x0) + SΓµ(x0) + DPV

Γ µ(x0) + WΓµ

=: ±1

2
µ(x0) + KΓµ(x0) .

(47)

For a sufficiently smooth curve Γ , the operator KΓ is a compact operator on X×X ,
where X is L2(Γ ) or C0,α(Γ ) for α ∈ (0, 1). Further, the integral equation(

−1

2
IX×X + KΓ

)
µ = h (48)

is invertible, even for multiply connected domains.

For the above integral equation, the singularities of the integral kernels which
define KΓ are at worst order r−1, even for a boundary with a corner.

3 Integral equation derivation

We would like to adapt the completed double layer representation for solutions of
Stokes flow (4) – (6) to solve the clamped plate problem (1) – (3). Let f and g
be the boundary data as in (1) – (3). By computing tangential derivatives of f on
each boundary component, we get the following related Stokes problem:

∆2w̃ = 0 x ∈ D ,

∂w̃

∂τ
=
∂f

∂τ
x ∈ Γ , (49)

∂w̃

∂n
= g x ∈ Γ .

There are two main issues to be addressed in using the completed double layer
representation in this context. First, the representation is designed for Stokes flow,
in which the quantities of interest are derivatives of the potential w̃ and not w̃
itself; the representation for w̃ may not be single-valued. We will establish that, in
the context of (49), the stream function is necessarily single-valued. We also discuss
some numerical issues related to evaluating the stream function. The second issue
to address is that the solution w̃ only satisfies the original boundary condition for
the value of w̃ up to a constant on each boundary component. In fact, for multiply
connected domains, the completed double layer representation is incomplete for
the Dirichlet problem (1) – (3). We present a remedy for this issue and provide
some physical intuition.

3.1 Single-valued stream functions

To solve the Dirichlet problem (1) – (3), it is necessary to compute a single-valued
biharmonic potential. In the case of a multiply connected domain, there is no
guarantee that a single-valued stream function exists for a given velocity field.
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Consider the following example. Let (r, θ) denote standard polar coordinates.
It is easy to verify that the velocity field u = 1

r r̂ solves the equations of Stokes
flow in an annulus centered at the origin. A stream function for this flow is w = θ,
which is not single-valued; indeed, there are no single-valued stream functions
which generate this flow.

Let D be a multiply connected domain with boundary Γ = ∪Ni=0Γi, as in the
previous section. We note that the gradient of a stream function is determined by
the velocity field, i.e.

∇w = −u⊥ :=

(
−u2
u1

)
. (50)

Therefore, a velocity field has single-valued stream functions if and only if u⊥ is
conservative. Using standard results from multivariable calculus, we can charac-
terize such flows.

Proposition 1 Suppose that u is a divergence-free velocity field which is C1 on
D and continuous on D ∪ Γ . The field u⊥ is conservative if and only if∫

Γi

u · n dS = 0 i = 0, 1, . . . N . (51)

The equalities (51) constituteN linearly independent constraints on the bound-
ary data because the divergence-free condition (24) implies that

∫
Γ
u ·n dS = 0. It

turns out that these conditions are satisfied when the Dirichlet problem is recast
as a Stokes flow (49), as it is easily verified that∫

Γi

u · n dS =

∫
Γi

∂f

∂τ
dS = 0 . (52)

Thus, any stream function w̃ obtained for the Stokes flow (49) is necessarily single-
valued.

3.2 Evaluating the stream function

Given compatible boundary data for the velocity field u, the completed double
layer representation for Stokes flow (46) guarantees the existence of a solution
density µ and a corresponding stream function w̃. The Goursat function formula
for w̃, see section 2.5.1, is necessarily single-valued, as explained above, but it is
not immediately obvious from the formula that this should be true.

The difficulty in the representation of w̃ comes from the part of the stream
function corresponding to the double layer potential (44). The second term in the
expression for the double layer potential is

v1(z) = Re

[
1

4πi

∫
Γ

(
ρ (ξ)dξ + ρ (ξ) dξ

)
log (ξ − z)

]
. (53)

To compute this term, in a näıve numerical implementation, the question of which
is the appropriate branch of the logarithm to use would arise at many steps. To
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avoid this complication, it is possible instead to compute v1, up to a constant, as
the harmonic conjugate of the function

v2 =
1

4π

∫
Γ

(
ρ (ξ)dξ + ρ (ξ) dξ

)
log (|ξ − z|) . (54)

We will use this approach to evalute v1 numerically. As a result of the Cauchy-
Riemann equations, the harmonic conjugate of v2, satisfies the following Neumann
problem for the Laplace equation:

∆v1 = 0 x ∈ D , (55)

∂v1
∂n

= −∂v2
∂τ

x ∈ Γ . (56)

It is possible then to use standard integral equation methods to compute v1.
Let v1 = SLΓ σ, where SLΓ σ is the single layer potential for Laplace’s equation,

given by

SLΓ σ(x) = − 1

2π

∫
Γ

log |x− y|σ(y) dS (y) , (57)

where σ ∈ X = C0,α (Γ ), for some α ∈ (0, 1), is an unknown density (see [13,10]).
Imposing the Neumann boundary conditions results in the following boundary
integral equation for σ:

−∂v2
∂τ

(x) =
1

2
σ (x)− 1

2π

∮
Γ

∂

∂nx
log |x− y|σ(y) dS (y) , (58)

−∂v2
∂τ

=

(
1

2
IX +KL

Γ

)
σ , (59)

where the operator KL
Γ is compact, so that the integral equation is second kind.

For a derivation of this result, see [13].
It is well known that the operator 1

2IX +KL
Γ has a one dimensional null space.

Thus, we choose to solve the above integral equation subject to the constraint∫
Γ
σ dS = 0. Furthermore, it is known that solving the Neumann problem subject

to the above constraint is equivalent to solving(
1

2
IX +KL

Γ +WΓ

)
σ = −∂v2

∂τ
(60)

where WΓσ =
∫
Γ
σ dS.

3.3 Making the representation complete

As mentioned above, the solution w̃ of the auxiliary Stokes problem (49) only
satisfies the boundary conditions of the original Dirichlet problem (1) – (3) up
to a constant on each boundary component. For a simply connected domain, this
constant can be recovered from the fact that adding an arbitrary constant to a
stream function does not change the velocity field. Thus, in simply connected
domains, there is an equivalence in the solutions of (49) and (1) – (3).
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To analyze the case of a multiply connected domain, we first consider radially
symmetric solutions on an annulus centered at the origin. Let w (r) be a radi-
ally symmetric biharmonic potential. Then w(r) solves the ordinary differential
equation (ODE)

d

dr
r
d

dr

1

r

d

dr
r
dw

dr
= 0 . (61)

Four linearly independent solutions of this ODE are 1, r2, log (r), and r2 log (r).
For each solution, we can compute the associated velocity field u = ∇⊥w. By
construction, u satisfies the continuity condition (24). For the momentum equa-
tion (23) to be satisfied, we need that ∆u is a conservative vector field, which
is equivalent to the condition that

∫
γ
∆u · d` = 0 for any closed loop γ in the

annulus. For the first three linearly independent solutions, ∆u = 0 so that ∆u is
trivially a conservative vector field. The fourth solution, on the other hand, has
∆u = 4

r θ̂. By considering a curve γ encircling the origin, we see that ∆u is not
a conservative vector field and that any pressure for the velocity field associated
with r2 log (r) is not single-valued.

The function 1
8π r

2 log (r) is the Green’s function for the biharmonic equation
and is the equivalent of a charge for such problems. The above analysis can be
extended to show that any solution of the biharmonic equation with net charge
cannot be represented as a Stokes velocity field. In simply connected domains,
since ∆2w = 0, there can be no net biharmonic charge in the domain. For multiply
connected domains with genus N , the set of stream functions for Stokes velocity
fields misses an N dimensional space of solutions, corresponding to biharmonic
charges located in the holes of the domain. Following this reasoning, we obtain a
complete representation for biharmonic potentials on multiply connected domains
by adding N charges, one per each hole of the domain, to the representation for
w. The details of this approach, and the proof that it is sufficient, is in the next
section.

3.4 The integral representation

Following the discussion in the previous two sections, it is now possible to present
an integral representation for the Dirichlet problem of the biharmonic equation
based on the completed double layer representation for the Stokes problem. We
first fix some notation. Let D be a multiply connected domain, with boundary
Γ = ∪Nk=0Γk, as in the previous sections. For each boundary component Γk, let
Dk be its interior and zk be a point in Dk. Then, let the solution w be represented
in terms of layer potentials and biharmonic charges as

w (z) = SwΓ ρ (z) +DwΓ ρ (z) + Re

[
z

∫
Γ

ρ (ξ) dS

]
+ c0 +

N∑
k=1

ckr
2
k log (rk) , (62)

where ρ is an unknown density, the ck are unknown constants, the distance from z
to zk is rk = |z− zk|, and the operators SwΓ and DwΓ map complex densities to the
stream functions corresponding to single and double layer potentials, as defined in
section 2.
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Remark 1 As discussed in section 3.2, we will only evaluate the operator DwΓ up
to a constant in our numerical implementation. However, this does not affect the
analysis of this section because of the freedom in choosing c0.

As before, we can identify a real, vector-valued density µ = (µ1, µ2)ᵀ with ρ by
setting µ2(x) − iµ1(x) = ρ(z). Let u = ∇⊥w be the velocity field corresponding
to the stream function w. Then, in terms of µ, we have

u (x) = SΓµ (x) + DΓµ (x) + WΓµ+∇⊥
N∑
k=1

ckr
2
k log(rk) , (63)

where SΓµ and DΓµ are the single and double layer potentials for the density µ,
as defined in section 2.

Let α ∈ (0, 1) and X = C0,α (Γ ). Assume that the boundary data for the
Dirichlet problem (1) – (3) satisfies f ∈ C1,α (Γ ) and g ∈ X , a slightly stronger
assumption on the regularity of f than given in the original problem statement.
Denote the integrals of f around each boundary component by bk =

∫
Γk
f dS. To

solve equation (1) – (3), we impose the boundary conditions on the gradient of w
as in (49) on the above representation for w, or, equivalently, the no-slip boundary
conditions (25) on the above representation for u with

h =

(
−
(
∂f

∂τ
τ2 + gn2

)
,
∂f

∂τ
τ1 + gn1

)ᵀ

. (64)

Under the assumptions on f and g, the boundary data h ∈ X × X .

Let Bc(x) denote the part of the velocity field due to the charges, i.e.

Bc(x) = ∇⊥
N∑
k=1

ckr
2
k log(rk) . (65)

Then, due to lemmas 1 and 2, enforcing the boundary condition u(x) = h(x) for
each x ∈ Γ results in the following boundary integral equation

h (x) = −1

2
µ (x) + SΓµ (x) + DPV

Γ µ (x) + WΓµ(x)

+∇⊥
N∑
k=1

ckr
2
k log(rk) (66)

h(x) =

(
−1

2
IX×X + KΓ

)
µ(x) + Bc(x) . (67)

To ensure that the values of w are correct on the boundary, further constraints
are needed. We impose N + 1 additional conditions on the value of w∫

Γk

w dS = bk k = 0, 1, 2, . . . , N , (68)

where the constants bk are as defined above. The integral of w about each compo-
nent can be written in terms of the unknowns as
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∫
Γk

w (x) dS(x) =

∫
Γk

[SwΓ [−µ2 + iµ1] (ξ) +DwΓ [−µ2 + iµ1] (ξ)] dSξ

+

∫
Γk

[
α

∫
Γ

µ (y) · x dSy

]
dS(x)

+

∫
Γk

[
c0 +

N∑
l=1

clr
2
l log rl

]
dS(x) (69)

=: Dkµ+ Fkc (70)

Combining equations (67), (68), and (70), we get the following linear system for
the unknowns µ and c [

−1
2IX×X + KΓ B

D F

] [
µ
c

]
=

[
h
b

]
, (71)

where D = (D0, . . . DN )ᵀ, F = (F0, . . . FN )ᵀ, and B = (b0, . . . bN )ᵀ.

Proposition 2 The block system (71) is an invertible Fredholm operator.

Proof It is simple to show that the linear system (71) is Fredholm. The block
which contains −1/2IX×X + KΓ is Fredholm due to lemma 3. The off-diagonal
blocks, denoted by B and D, are trivially compact because either the domain or
range of the operator is finite dimensional. Finally, F is Fredholm because it is a
finite-dimensional linear operator. Therefore, the full system is Fredholm.

Due to the Fredholm alternative, it is only necessary to establish the injectivity
of the system (71) to prove that it is invertible. It is clear that if µ and c solve
equation (71), then the resulting solution, w, given by (62), solves the original
Dirichlet problem (1) – (3). By construction, w is biharmonic in D. Moreover, w
satisfies ∂w

∂τ = ∂f
∂τ and ∂w

∂n = g on the whole boundary Γ and
∫
Γk
w =

∫
Γk
f for

each boundary component Γk, so that the boundary conditions are satisfied.
In the case that h ≡ 0 and b = 0, we have that f = g ≡ 0 for the Dirichlet

problem. By the uniqueness of solutions to (1) – (3), this implies that w ≡ 0 in
D. It is, however, less immediate that w ≡ 0 implies that µ ≡ 0 and c = 0.

For each k = 1, . . . , N , let Γ̃k ⊂ D be a curve which satisfies n
(
zj , Γ̃k

)
= δjk,

where n (z, γ) represents the winding number of the curve γ about z. Because
u = ∇⊥w and w ≡ 0 in D, we have∫

Γ̃k

∆u · τ dS = 0. (72)

Let uµ = SΓµ+ DΓµ = u−Bc−WΓµ. We observe that uµ corresponds to
a Stokes velocity field in D for any µ. Let p be its associated pressure. Then∫

Γ̃k

∆uµ · τ dS =

∫
Γ̃k

∇p · τ dS = 0 . (73)

Further, a simple calculation shows that∫
Γ̃k

∆∇⊥cjr2j log(rj) · τ dS = 8πcjδjk , (74)
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for j = 1, . . . , N . Combining these equations, we conclude that

0 =

∫
Γ̃k

∆u · τ dS =

∫
Γ̃k

∆(uµ + Wµ+ Bc) · τ dS = 8πck . (75)

Thus ck = 0 for k = 1, 2, . . . N .
The first row of the system (71) then reads(

−1

2
IX×X + KΓ

)
µ = 0 . (76)

From the invertibility of −1
2IX×X + KΓ , we conclude that µ ≡ 0. Because µ ≡ 0

and ck = 0 for k = 1, . . . , N , we get that w ≡ c0. It then follows that c0 = 0 as
well, proving the injectivity of the system.

4 Results

We first review the existing numerical tools used to compute solutions of the
integral equation (71). To discretize the integral equations, we use the Nyström
method. We divide the boundary into panels and represent the unknown density
and the boundary data by their values at scaled Gauss-Legendre nodes on each
panel. Let np denote the number of Gauss-Legendre panels. We discretize each
panel using 16 scaled Gauss-Legendre nodes. Then nd = 16np is the number of
discretization points on the boundary. Let xj denote the discretization nodes, wj
denote the appropriately scaled Gauss-Legendre quadrature weights for smooth
functions, and µj denote the unknown density at xj . When forming the linear
system, we use scaled unknowns, µj

√
wj , so that the spectral properties of the

discrete system with respect to the l2 norm are approximations of the spectral
properties of the continuous system as on operator on L2 (for more on this point of
view, see [2]). The integral kernels in this paper are either smooth or have a weak
(logarithmic) singularity. For the smooth kernels in the integral representation,
we use standard Gauss-Legendre weights appropriately scaled. For kernels with a
logarithmic singularity, we use order 20 generalized Gaussian quadrature rules [3,
4].

After applying the integral rule, we obtain a linear system for the unknowns.
This system is typically well-conditioned, but dense. Let A denote the discretized
linear system of size 2nd +N + 1 corresponding to the integral equation (71). Let
κ(A) denote the condition number of the discretized matrix A. For our applica-
tions, the system size was modest and we computed the unknowns µ and ck using
Gaussian elimination. For larger applications, the system is amenable to solution
by any of a variety of iterative or fast-direct solvers, which we will not review here.

For the visualizations in this section, we evaluate the layer potentials inside the
domain, with some points being very close to the boundary. The value of the layer
potential can be difficult to evaluate at such points because of the near-singularity
in the integral kernel. We use a sixth order quadrature by expansion method [12,
19] to evaluate these integrals efficiently and accurately.

In this section we consider two test cases. The first example is a convergence
study for a simply connected domain to demonstrate the order of convergence
for the discretized integral equation. We also compare the condition numbers for
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the discretized linear systems corresponding to our integral representation and
the existing integral representation by Farkas [6] for a family of simply connected
domains with increasing curvature. For the second example, we demonstrate the
order of convergence and compute the Green’s function for a multiply connected
domain. For all examples except the computation of the Green’s function, the
boundary data f and g are chosen corresponding to a known solution of the bi-
harmonic equation in D given by

w(x) =

ns∑
j=1

qj |x− sj |2 log |x− sj | , (77)

where qj are uniformly chosen from [0, 1]. Let wcomp(t) denote the computed
solution at targets t in the interior of D, and let ε denote an estimate for the error
given by

ε =

√∑nt

j=1(wcomp(tj)− w(tj))2√∑nt

j=1 w(tj)2
.

4.1 Simply connected domain examples

Let D denote the interior of a rounded rectangular bar with length a = 1, height
b = 0.5, and vertices at (0, 0), (a, 0), (a, b), (0, b). Following the procedure discussed
in [5], the corners are rounded using the Gaussian kernel

φ(x) =
1√
2πh

e−x
2/(2h2) ,

with h = 0.05. The boundary data f and g are chosen corresponding to a known
solution w, defined as in (77), with four sources sj located at

s1 =

(
a+ 0.2 + δ1,

b

2
+ δ2

)
, s2 =

(a
2

+ δ3, b+ 0.2 + δ4
)
,

s3 =

(
−0.2 + δ5,

b

2
+ δ6

)
, s4 =

(a
2

+ δ7,−0.2 + δ8
)
,

with δi chosen uniformly from [−0.05, 0.05].
The potential w is evaluated at targets tj in the interior of D,

t1 =

(
a

4
+ δ9,

b

4
+ δ10

)
, t2 =

(
a

4
+ δ11,

3b

4
+ δ12

)
,

t3 =

(
3a

4
+ δ13,

b

4
+ δ14

)
, t4 =

(
3a

4
+ δ15,

3b

4
+ δ16

)
,

with δi again chosen uniformly from [−0.05, 0.05]. A sample geometry with sources
sj and targets tj and the error ε as a function of nd are shown in fig. 1. The
convergence study shows that the error decays like a 20th order convergent scheme.

The integral equation presented in this paper is significantly better conditioned
than the existing integral equation discussed in [6] — particularly when the bound-
ary has regions with large curvature. We plot the condition number κ(A) of the
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Fig. 1 (left): Geometry of simply connected domain for convergence study – the circles denote
the location of the sources {sj} and the squares denote the location of the targets {tj}, (right):
error ε as a function of the system size N = 2nd + 1.
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Fig. 2 Condition number κ(A) of discretized integral equations (71) (circles) and (20)
(squares) as a function of corner rounding parameter h

discretized system of integral equations for the representations given by both (71)
and (20) as a function of the rounding parameter h for the rounded rectangular
bar in fig. 2. The maximum curvature of the boundary is directly proportional to
1/h2. The condition number κ(A) increases linearly with the maximum curvature
for integral equation (20), but is independent of the curvature for the integral
equation presented in this paper.

4.2 Multiply connected domain - examples

Let D now denote the interior of a multiply connected domain, where the outer
boundary Γ0 is the boundary of the rounded rectangular bar discussed above with
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ε
Fig. 3 (left): Geometry of multiply connected domain for convergence study – the circles
denote the location of the sources {sj} and the squares denote the location of the targets {tj},
(right): error ε as a function of the system size N = 2nd +N + 1.

rounding parameter h = 0.05 and the domain has ten circular obstacles Γi with
radii r0 = 0.04 and centers located at xi,

xi = (0.12 + (i− 1)0.2, 0.15) i = 1, 2, . . . 5 ,

xi = (0.08 + (i− 6)0.2, 0.35) i = 6, 7, . . . 10 .

We will first perform a convergence study, as above, with a known solution w
defined in terms of point sources according to (77). We create ten sources, one
located inside each obstacle, whose locations are given by

si = xi + (δ2i−1, δ2i) ,

where δi are chosen uniformly from [−0.5r0, 0.5r0]. The potential is then tested at
twelve targets located at

ti = (0.22 + (i− 1)0.2, 0.05) + (δ2i−1, δ2i) i = 1, 2, 3, 4 ,

ti = (0.22 + (i− 5)0.2, 0.25) + (δ2i−1, δ2i) i = 5, 6, 7, 8 , (78)

ti = (0.18 + (i− 9)0.2, 0.45) + (δ2i−1, δ2i) i = 9, 10, 11, 12 ,

where δi are chosen uniformly from [−0.5r0, 0.5r0].

We observe 20th order convergence in the error even for this example. The
error as a function of the number of discretization points along with a sample
geometry are shown in fig. 3. We also plot the field, and the error in evaluating
the potential in the volume using a sixth order quadrature by expansion method
in fig. 4. We note that the error observed near the boundary is larger than at the
targets used for the convergence study; this is a result of the relatively low order
of the quadrature by expansion method and could be improved by increasing the
number of points on the boundary.
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Fig. 4 (left): Known biharmonic potential due to sources at {sj} and (right) absolute point-
wise error |wcomp(t)− w(t)| for targets in the interior of D.

For the final example, we compute the function w which satisfies the PDE

−∆2w =
12∑
j=1

δx=tj x ∈ D

w = 0 x ∈ Γ (79)

∂w

∂n
= 0 x ∈ Γ ,

where δx=y is the two dimensional radially symmetric Dirac delta function centered
at y and {tj} are defined in (78). This function describes the vertical displacement
of an isotropic and homogeneous thin clamped plate with a transverse load given
by point forces at the points tj . It is also, by definition, a linear combination of
the domain Green’s function GD, as in

w(x) =
12∑
j=1

GD(x, tj) .

To compute w, we first obtain a particular solution wp which satisfies the PDE
in the volume and add to it the solution of a homogeneous problem wh to fix the
boundary conditions. We have

w(x) = wp(x) + wh(x) ,

where

wp(x) =
12∑
j=1

GB(x, tj) ,

and wh satisfies the following homogeneous biharmonic equation,

−∆2wh = 0 x ∈ D
wh = −wp x ∈ Γ (80)

∂wh
∂n

= −∂wp
∂n

x ∈ Γ .

We plot the computed solution in fig. 5.
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Fig. 5 Biharmonic domain green’s function satisfying equations (79)

5 Conclusion

We have presented an integral representation for the biharmonic Dirichlet prob-
lem which is stable for domains which have a boundary with high curvature and is
applicable to domains which are multiply connected. The representation is based
on converting the Dirichlet problem into a problem with velocity boundary con-
ditions, so that classical representations for the velocity boundary value problem
can be used. While the technique of [6] — in which integral kernels are chosen by
optimizing over the derivatives of an appropriate Green’s function — is general
and powerful, the spectral properties of the resulting operator are undesirable for
boundaries with high curvature or a corner. Indeed, it seems intuitive that all
direct representations for the biharmonic Dirichlet problem should suffer in some
way: such an approach asks that one of the integral kernels be singular enough
to result in a second kind Fredholm equation for the value of the layer potential
and smooth enough to result in a first kind Fredholm equation for the normal
derivative of the layer potential.

While some of the above is specific to the biharmonic equation, in particular
the use of Goursat functions, it is reasonable to expect the approach to generalize
to other high order elliptic problems as well. In particular, there are represen-
tations for the modified Stokes equations which are analogues of the completed
double layer representation used here [18]. The extension of this method to three
dimensions is a topic of ongoing research and will be reported at a later date.
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