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Abstract—The problem of optimally placing sensors under a
cost constraint arises naturally in the design of industrial and
commercial products, as well as in scientific experiments. We
consider a relaxation of the full optimization formulation of this
problem and then extend a well-established greedy algorithm for
the optimal sensor placement problem without cost constraints.
We demonstrate the effectiveness of this algorithm on data sets
related to facial recognition, climate science, and fluid mechanics.
This algorithm is scalable and often identifies sparse sensors with
near-optimal reconstruction performance, while dramatically
reducing the overall cost of the sensors. We find that the cost-
error landscape varies by application, with intuitive connections
to the underlying physics. Additionally, we include experiments
for various pre-processing techniques and find that a popular
technique based on the singular value decomposition is often
suboptimal.

I. INTRODUCTION

DETERMINING the optimal placement of sensors under
a cost constraint is relevant to many fields of scientific

research and industry. Indeed, such considerations are critical
in evaluating global monitoring systems and characterizing
spatio-temporal dynamics (e.g. the brain, ocean and atmo-
spheric dynamics, power grid networks, fluid flows, etc). For
these applications, it is typical that only a limited number
of measurements can be made of the system due to either
prohibitive expense (i.e. either sensors are expensive, or they
are expensive to place, or both) or the inability to place a
sensor in a desired location (inaccessibility).

There are various high-level objectives for sensor placement,
most of which are well studied. Common objectives include
classification [1], [2], reconstruction [3]–[9], reduced-order
modeling [8], [10]–[12], and control [13], [14]. In contrast,
the case in which different sensor locations may have different
associated costs has received relatively little attention, with the
notable exception of the submodularity literature [14]–[22]. As
reconstruction error is not itself submodular (see Section I-B
below for more on submodularity), the goal of this text is
to develop algorithms that directly target the reconstruction
objective, while incorporating heterogeneous constraints on the
measurement locations.

To this end, we develop a heuristic, greedy sampling strat-
egy whereby the sensor placement optimization is formulated
as a cost-constrained problem in a relaxed form. We further
introduce a parameter representing the balance between the
quality of the reconstruction and the cost, and thus can evaluate
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a cost-error curve. The simple algorithmic structure proposed
is based on a modification of the pivoted QR decomposition
algorithm of Businger and Golub [23], which represents a
matrix as the product of an orthogonal matrix, Q, and an
upper-triangular matrix, R, and provides an effective and
scalable strategy for economical sensor placement for a wide
range of scientific and engineering applications1 [9], [12].

A. Sensor placement for reconstruction

Since our focus is on full-state reconstruction, here we
consider the problem of finding sensor locations that min-
imize the reconstruction error. In principle, the map from
the measurements of a system to the reconstruction can take
any form. Here, we will review those methods for which the
reconstruction is obtained by applying a linear map to the
values at the sensors; this can be viewed as an interpolation
problem, where the sensors are interpolation points. There are
a few reasons to restrict the search to linear maps: (i) it is easy
to check the stability and optimality of a given set of points, (ii)
it is straightforward to design efficient algorithms for sensor
placement, and, (iii) as noted above, the sensor locations can
be interpreted as interpolation points.

A brute-force solution of the sensor placement problem
may be obtained by searching over all possible subsets of the
sensors, but this approach quickly becomes intractable, as the
number of subsets increases combinatorially. However, ran-
domly placed sensors perform surprisingly well. For instance,
Wright et al. observed that, given a generic basis in which
samples of the signal will be sparse, it is possible to perfectly
reconstruct a signal that has been downsampled or randomly
projected [24]. The compressed sensing literature provides a
theoretical basis for the surprising effectiveness of random,
or rather incoherent, measurements in this setting; see, inter
alia, [25]–[29]. Such an approach does not necessarily make
use of any full-state observations of the system (though some
model for the system is implied), and random sensors have
been observed to be less efficient than sensors that take this
data into account [9].

A common data-driven approach is to start with a tailored
basis derived from the observed samples, typically given by
the dominant singular vectors [9]–[11], [30]. See [7], [8] for
early examples of signal reconstruction from a limited number
of sensors using such a basis. A number of heuristic choices
for the locations have been developed, including placing
sensors at the extrema of the singular vectors [4]–[6].

Before continuing our discussion of sensor placement in a
tailored basis, we require some notation. Assume we have m

1MATLAB code for our algorithm can be found at https://github.com/
askhamwhat/sensors-cost-paper, along with a simple example of its use and
codes to make some of the figures from Section VI.
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samples of data xi ∈ Rn, and let these samples form the rows
of a matrix X:

X =


x1

x2

...
xm

 . (1)

Thus the columns of X correspond to spatial locations. Fur-
thermore, let Ψ be some matrix derived from X (e.g. Ψ may
be taken to be the right singular vectors of X, random linear
combinations of the rows of X, or X itself). For an index set
J and any matrix M, let M·J denote the matrix formed by
the columns of M with index in J . If the size of J is fixed, it
is known that the set of indices Ĵ that maximizes the product
of the singular values of Ψ·J (or equivalently maximizes the
determinant of Ψ·J ) provides optimal interpolation points for
Ψ [31], [32] (see Theorem 1 below for the definition of
optimal).

The problem of finding such a Ĵ is nonconvex and NP-
hard, but there are reasonable approximate algorithms. Gu and
Eisenstat developed a polynomial time algorithm for comput-
ing J when the optimality criterion is relaxed slightly [31]. In
[33], Li et al. considered the related problem of dual volume
sampling, which would allow the placement of more sensors
than there are samples of data, using a probabilistic framework.
Joshi and Boyd reformulated determinant maximization as
an approximate convex problem, which may be solved in
polynomial time and is observed to provide nearly optimal
sensors [3]. While these approaches scale polynomially in
the number of sensors and the size of the data, they are not
as computationally efficient as some of the existing greedy
algorithms for interpolation, especially for high-dimensional
data. Further, the examples on which the greedy algorithms
are known to fail appear to be pathological, i.e. it is incredibly
unlikely that the greedy approach will fail in practice.

The greedy sensor selection algorithm which is of greatest
interest in this paper is based on the column pivoted QR
decomposition. In particular, for a given number of sensors
k, one simply selects J to be the first k column pivots of Ψ
(see Section II for an explanation as to why this is a greedy
approach for maximizing the product of the singular values of
Ψ·J ). This algorithm is the basis for practical approaches to
computing the interpolative decomposition [32], [34], which is
commonly used to compress low-rank matrices. The algorithm
is also used in the discrete empirical interpolation method
(DEIM) from reduced order modeling [10], [11], in its more
stable Q-DEIM formulation [12]. For high-dimensional prob-
lems with many samples of data, standard techniques from the
burgeoning field of randomized algorithms for linear algebra
may be used to improve the efficiency of these schemes [35],
[36].

B. Submodularity

In a line of research parallel to the linear-algebra-based
methods described above, the sensor placement problem is
often formulated as submodular function optimization. A set
function is submodular if it obeys a diminishing returns
property: adding an element to a set produces a greater change

in the function than adding the same element to a superset of
that set. Greedy methods for optimizing submodular functions
are well studied; see [37] for a proof of the near-optimal
performance of greedy methods for submodular functions and,
inter alia, [15]–[20], [38] for further developments. In par-
ticular, [15] provides a comprehensive review of submodular
functions and the maximization thereof.

The topic is of interest in this work because certain perfor-
mance metrics for sensor placement — including the determi-
nant maximizing metric used in this paper — are submodular,
which means that greedy methods enjoy some optimality guar-
antees. For example, [39], [40] leverage the submodularity of
the mutual information between chosen and unchosen sensor
locations to find near-optimal observation locations to model
Gaussian processes. The FrameSense algorithm developed
in [18] is a fast greedy method that minimizes the frame
potential of the basis matrix Ψ, a measure of the orthogonality
of its rows. Under certain assumptions on the structure of the
linear model, maximizing the frame potential implies a near-
optimal bound on the mean square error of parameter recovery.
Submodularity-based methods can be extended to include a
cost function on sensor location, as in [16], [21], [22].

The related problem of controlling a system based on a
limited number of measurements and actuators has also been
thoroughly explored, as in [41]–[44]. Furthermore, it can be
shown that certain controllability and observability metrics are
submodular, and thus near-optimal sensor and actuator loca-
tions can be chosen using simple greedy algorithms [13], [45]–
[47]. The submodularity properties are extended to include a
heterogeneous cost function in [14].

C. Contributions of this work

It can be verified through numerical experiment that the
reconstruction error of a matrix after interpolation is not itself
submodular in the interpolation points. However, the log-
determinant is a good proxy for reconstruction, see Theorem 1,
and is submodular. While the standard optimality guarantees
either do not apply or are significantly weakened for a possibly
decreasing submodular function like the log-determinant, the
method is empirically effective in the unconstrained recon-
struction setting, and the QR decomposition approach for com-
puting the sensor locations is efficient and scalable. Therefore,
we have set out in this work to adapt the QR decomposition
approach to the cost-constrained setting.

In the techniques described in Section I-A, an optimal map
and set of sensor locations are found for a fixed number
of sensors. This is equivalent to the cost-constrained sensor
placement problem when each sensor has the same cost.
In the case that some sensor locations should be entirely
excluded, corresponding to an infinite cost, i.e. an inaccessible
measurement location, and the remaining locations are of
uniform cost, again the algorithms above may be used by
simply narrowing the search to the allowed sensor locations
(note that such a restriction has implications for the stability
of the interpolation map).

We show that it is simple to modify the pivoted-QR-
decomposition-based scheme to incorporate a cost constraint
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for problems in between these extremes, i.e. for problems in
which some sensor locations cost more than others but may
be more informative. The method is obtained by writing the
cost-constrained problem in a relaxed form, which introduces
a parameter representing the balance between the quality of the
reconstruction and the cost, and then varying that parameter to
trace out a cost-error curve. For each value of the parameter,
we use a greedy algorithm to add sensor locations one by one.

We test the performance of our method on data sets from
facial recognition, climate science, and fluid mechanics using
a standard training-set/testing-set apparatus. In many cases, the
proposed algorithm displays a significant advantage over meth-
ods based on randomly selected sensors. We also compare with
known performance bound approximations where applicable
and find that our algorithm is often near the approximately
optimal solution.

Furthermore, we include a brief discussion of the effect
of data pre-processing (i.e. the choice of Ψ) on the qual-
ity of the sensor locations; in particular, we compare the
performance when applied to the raw data, the first several
singular vectors of the data, and randomized projections of
the data. We find that with the unmodified column pivoted
QR decomposition, using the raw data (taking Ψ = X) yields
the lowest reconstruction error at a given number of sensors,
while randomized projections of the data lead to slightly higher
errors at a reduced computational cost. Taking the first several
singular vectors of X gives the highest reconstruction errors
of the three pre-processing methods tested. The results are the
same when we incorporate a cost function using our modified
QR decomposition, but additionally we note that all three pre-
processing techniques yield comparable costs.

The remainder of this paper is organized as follows. In
Section II, we summarize some relevant results from the
interpolation literature and present our problem formulation.
We then develop an algorithm for sensor placement in Sec-
tion III which is a simple extension of the existing methods. In
Section IV, we describe the three data sets we use as examples.
We discuss pre-processing in Section V. We then apply our
method to the three data sets and discuss the performance in
Section VI. Finally, we provide some concluding remarks and
indicate possible future avenues for research in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we fix some notation, formulate the linear
sensor placement problem with non-uniform cost constraints,
and review the pivoted QR algorithm, which will form the
basis of our method.

A. Setting, notation, and problem formulation

Let xi ∈ Rn denote samples of some system and let
η ∈ Rn

+ denote non-negative costs associated with each
sample location. We collect the samples xi as the rows of a
matrix X ∈ Rm×n. The sensor placement problem with cost
constraints then seeks out an optimal subset Ĵ of the column
indices of X which balances the associated cost

∑
j∈Ĵ ηj with

reconstruction error and stability, which we define below.

For a given set of indices, J = {j1, . . . , jl}, it is simple to
construct the optimal linear map for reconstructing the entries
in X. Let

T̂(J) = argmin
T∈Rl×n

‖X−X·JT‖F , (2)

where X·J denotes the matrix given by collecting the columns
of X whose indices are in J , and ‖ ·‖F denotes the Frobenius
norm. It is well known that T̂(J) = X†·JX, where X†·J denotes
the Moore-Penrose pseudoinverse of X·J , i.e. this is the least-
squares solution. Therefore, the relative reconstruction error
for linear sensor placement is given by

e(J) =
‖X−X·JX†·JX‖F

‖X‖F
, (3)

and the stability of the interpolation map is determined by
‖X†·JX‖∞. In the following, we will focus on computing a
subset J such that the error is small and the map is stable.

We will use much of the notation introduced above through-
out the paper. When necessary, we will denote data matrices
and errors corresponding to a training set by Xtr and etr(J)
and the matrices and errors corresponding to a testing set by
Xte and ete(J). Note that

ete(J) =
‖Xte −Xte

·JXtr†
·JXtr‖F

‖Xte‖F
, (4)

i.e. the operator T̂(J) is always determined by the training
set. It is also common (see [9], [11], [35], [36]) to reduce the
computational cost associated with finding J by applying the
algorithm to an r×n matrix Ψtr which captures the dominant
features of Xtr for some r � m, e.g. to a matrix of singular
vectors of Xtr or a matrix given by random linear combinations
of the rows of Xtr. In this case, we define T̂(J) = Ψtr†

·JΨtr.
It is now possible to define the linear sensor placement

problem with cost constraints. Let η be the cost vector as
described above and let s and b denote desired upper bounds
on the stability of the map T̂(J) and the budget, respectively.
Then we may write the cost-constrained problem as

Ĵ = argmin
J

e(J) s.t.
∑
j∈J

ηj ≤ b and ‖T̂(J)‖∞,vec ≤ s ,

(5)
where ‖ · ‖∞,vec denotes the maximum absolute value over
the entries of a matrix. Our algorithm will actually focus on
the following relaxation of (5). Note that, for a given b, there
exists a λ such that the problem

Ĵ = argmin
J

e(J) + λ
∑
j∈J

ηj s.t. ‖T̂(J)‖∞,vec ≤ s (6)

and (5) have the same solution. Because we are often interested
in the cost-error landscape, we seek the solution of (6) for a
number of values of λ, so that we trace out a cost-error curve.
We note that the main algorithm we present in Section III does
not actually solve (6). Instead, we seek a greedy approximate
solution which does not strictly enforce the stability constraint
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but uses a heuristic strategy to bias the sensors in favor of
stability.

In the case that all entries of η are equal and positive, the
constraint

∑
j∈J ηj ≤ b simplifies to the constraint |J | ≤

b/η1. This is equivalent to the problem of optimally placing
a specified number of sensors, a well-studied problem which
we briefly review in the remainder of this section.

B. Theoretical results

In this section, we will motivate determinant maximization
algorithms (sometimes called D-optimal) for selecting a fixed
number of interpolation points, i.e. methods that maximize
the product of the singular values of Xtr

·J . As observed in
[32], the strong rank revealing QR decomposition methods of
[31] provide a polynomial time algorithm for computing an
approximately determinant-maximizing subset J such that the
error e(J) is near-optimally small and the map T̂(J) is near-
optimally stable. The optimal performance is summarized in
the following theorem.

Theorem 1: (from [32]) Let X ∈ Rm×n and let k ≤ l =
min(m,n). Then, there exists a J such that |J | = k,

‖X−X·JT̂(J)‖F ≤
√
1 + k(l − k)

l∑
j=k+1

σj(X) , (7)

where σj(X) denotes the jth singular value of X, and

‖T̂(J)‖F ≤
√
k(n− k) + k . (8)

Remarkably, relaxing the bounds to

‖X−X·JT̂(J)‖F ≤
√
1 + lk(l − k)

l∑
j=k+1

σj(X) , (9)

and

‖T̂(J)‖F ≤
√
nk(n− k) + k , (10)

the algorithms of [31] compute such a J using, typically,
O(mnk) flops and at most O(mnl) flops.

While provably near-optimal and polynomial time algo-
rithms are provided by [31], the standard QR algorithm with
column pivoting is much more efficient and scalable and
tends to achieve similar bounds. Because the column pivoting
decision is equivalent to the greedy heuristic for the log-
determinant, which is a submodular function, one may try
to appeal to the standard optimality bounds [37] and bounds
for the cost-constrained case [16]. Unfortunately, the log-
determinant can decrease for large classes of matrices, includ-
ing those considered in this paper, and the existing bounds are
either weakened or no longer apply for functions which can
decrease. In particular, a statement about the reconstruction
error along the lines of Theorem 1 is not possible and there
are indeed known failure cases (see, for instance, the Kahan
matrix example of [31]). Fortunately, such failures appear to
be limited to pathological examples.

C. QR with column pivoting for sensor placement

In this section, we review the column-pivoted QR decom-
position algorithm of [23], which can be viewed as a greedy
determinant-maximizing method for sensor placement without
cost constraints. This algorithm is the basis for our cost-
constrained method.

The method of [23] is based on the repeated application of
Householder reflectors to triangularize a given matrix. Let a
vector v ∈ Rm be given. We can then define a Householder
reflector [48] which maps v to ‖v‖2e1, where e1 is the first
standard basis vector in Rm. Let σ = ‖v‖2 and let v1 denote
the first entry of v. Then, the matrix

H(v) := I− (v + sign(v1)σe1)(v + sign(v1)σe1)ᵀ

σ(σ + |v1|)
(11)

maps v to − sign(v1)σe1. It is simple to verify that there
exists a u ∈ Rm of unit norm such that the map is given
by I − 2uuᵀ, which is the standard form of a Householder
reflector. This expression also makes it clear that H(v) is its
own inverse.

Using the notation of [31], the standard QR decomposition
algorithm with column pivoting applied to a matrix X ∈
Rm×n proceeds by iteratively defining an orthogonal matrix
Qk and a permutation of the indices Jk = {jk1 , . . . , jkn} such
that

XP(Jk) = QkRk , Rk =

(
Ak Bk

0 Ck

)
, (12)

where Ak ∈ Rk×k is upper triangular, Bk ∈ Rk×(n−k), Ck ∈
R(m−k)×(n−k), and

P(Jk) =
(
ejk1 ejk2 · · · ejkn

)
. (13)

For k < min(m,n), the decomposition (12) is sometimes
called a partial QR factorization.

Let J0 = {1, . . . n} and Q0 = I. Denote the columns of
Ck by ck,i for i = 1, . . . , n− k. To obtain the k + 1st iterate
from the kth, let ck,l be the column of Ck with the largest
norm. We update the permutation indices to move this column
to the front, i.e. jk+1

k+1 = jkk+l, j
k+1
k+l = jkk+1, and jk+1

i = jki
for all other i. If we update the orthogonal matrix Qk via

Qk+1 = Qk

(
I 0
0 H(ck,l)

)
, (14)

then

XP(Jk+1) = Qk

(
Ak+1 Bk+1

0 Ck+1

)
, (15)

where Ak+1, Bk+1 and Ck+1 are of the correct form and
Ak+1

k+1,k+1 = ±‖ck,l‖.
The idea of using the column-pivoted QR algorithm for

sensor placement is that, for a given k, the first k pivots
jk1 , . . . , j

k
k should be a good choice of sensor locations. Let

J = {jk1 , . . . , jkk}. Many of the quantities of interest in
reconstruction can then be determined using the schematic
(12). Note that
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X·J = Qk

(
Ak

0

)
so that X†·J =

((
Ak
)−1

0
) (

Qk
)ᵀ
.

Then the interpolation matrix is given by

T̂(J)P(Jk) = X†·JXP(Jk) =
(
I
(
Ak
)−1

Bk
)
. (16)

Finally, the error can be found by observing that

XP(Jk)−X·JT̂(J)P(Jk) = Qk

(
0 0
0 Ck

)
,

so that e(J) = ‖Ck‖F /‖X‖F . Therefore, both the stability of
the map and the error are determined by the factors Ak, Bk,
and Ck.

Of course, for any permutation Jk of the indices, it is
possible to construct a Qk using Householder reflectors such
that Ak, Bk, and Ck are of the correct form. In [31], it
was shown that perfectly stable and highly accurate sensors,
in the sense of Theorem 1, may be obtained by maximizing
|detAk| over all possible permutations Jk. Because the Ak

are upper triangular, the column-pivoted QR procedure may
be seen as a greedy method which approximates the optimal
solution iteratively, updating Jk+1 so that |detAk+1| is as
large as possible with the first k entries of Jk+1 fixed to be
equal to the first k entries of Jk.

Remark 1: For the calculations in Sections V and VI, we
computed T̂(J) using the formula T̂(J) = X†·JX and found
that this worked well for our examples, though there may be
an advantage to using a more numerically stable definition for
T̂(J), see (3.13) of [32].

III. ALGORITHM FOR SENSOR PLACEMENT UNDER COST
CONSTRAINTS

We can now derive a greedy algorithm for the relaxed
version of the cost-constrained sensor placement problem (6).
The algorithm is based on the column-pivoted QR algorithm
described in Section II-C, where the pivot column is now
chosen to balance the decrease in the error e(J) with the
increase in the total cost

∑
j∈J ηj .

Let Jk, Qk, Ak, Bk, and Ck define a partial QR factor-
ization at step k, as in (12). To incorporate the effect of the
cost of a sensor, we update the factorization by finding the l
which satisfies

l = argmax
i=1,...,n−k

‖ck,i‖2 − γηjki+k
, (17)

where γ is some fixed parameter in the optimization. As
before, we can update the permutation indices to move this
column to the front, i.e. jk+1

k+1 = jkk+l, j
k+1
k+l = jkk+1, and

jk+1
i = jki for all other i, and update the orthogonal matrix

Qk via

Qk+1 = Qk

(
I 0
0 H(ck,l)

)
, (18)

so that the corresponding Ak+1, Bk+1, and Ck+1 are of the
proper form. This process is summarized in pseudocode in

Algorithm 1 QR pivoting with cost constraints.
Input: data matrix X, number of sensors p, cost vector η,

cost-error balance γ
Output: partial QR decomposition in Q and R, and pivots

in J (the first p are the sensors)
1: m,n ← size(X)
2: R ← copy(X)
3: Q ← eye(m)
4: J ← 1 : n
5: for k = 1, . . . , p do
6: for i = k, . . . , n do
7: νi ← ‖Rk:m,i‖2 − γηji
8: l ← index of the maximum of νk:n . choose the

pivot as in (17)
9: v ← Rk:m,k−1+l

10: swap(Rk:m,k,Rk:m,k−1+l)
11: swap(jk, jk−1+l)
12: σ ← ‖v‖2
13: u ← (v + sign(v1)σe1)/

√
2σ(σ + |v1|) . build the

normalized Householder reflector
14: Rk:m,k:n ← Rk:m,k:n − 2uuᵀRk:m,k:n

15: Q:,k:n ← Q:,k:n − 2Q:,k:nuuᵀ

Algorithm 1. Let n denote the dimension of the signal, m de-
note the number of training samples, and p denote the desired
number of sensors. Then, the algorithm has a computational
complexity of O(mnp), which can be determined by counting
operations in the pseudocode. Note that typically the vectors
corresponding to the Householder reflector are stored rather
than the matrix Q itself in an efficient implementation.

When γ = 0, the pivot chosen by the formula (17) is
the same as the pivot in column pivoted QR. After k + 1
steps, the difference in the error, e(J1:k) − e(J1:k+1), is at
least ‖ck,l‖2/(‖X‖F (1 + 2

√
n− k)). Therefore, a positive γ

balances the decrease in the error, e(J1:i) − e(J1:i+1), with
the cost of the pivot, ηji+1

.
Remark 2: The pivot as chosen in (17) does not necessarily

correspond to the natural greedy choice, i.e. the pivot which
minimizes e(J1:k+1) + γ

∑
j∈J1:k+1

ηj with J1:k fixed. Such
a pivot could be computed, though at greater cost than the
present algorithm. Further, there is another reason to avoid
such a strategy: it completely ignores the stability of the
resulting map. By instead pivoting based on column size, we
bias the algorithm toward choosing stable pivots while still
incorporating some sense of the reduction in error.

IV. DESCRIPTION OF DATA SETS

In this section, we provide details about the three example
data sets we consider, as well as the cost functions and
parameters used. An example snapshot from each system is
given in Figure 1.

We will consider two types of training set: interpolative
and extrapolative. By interpolative, we mean that we have
sampled a subset of the data that draws from all regions of the
parameter space. By extrapolative, we mean that we have pur-
posefully missed data from a portion of the parameter space.
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Fig. 1. An example from each of the three data sets considered in this work. Pictured from left to right are one of the Yale B faces, a snapshot of global sea
surface temperature, and a snapshot of vortex shedding of a fluid flowing around a stationary cylinder.

The data that is left out forms the testing set. Finding good
sensor locations for the extrapolative training sets is a harder
problem; the sensor locations must reasonably generalize to
samples of data which may be unlike anything in the training
set.

The first example is the Extended Yale Face Database
B, referred to here as the eigenface data set [49]–[52]. It
comprises about 64 images each of 38 individuals under
various lighting conditions. The images are downsized to
32×32 pixels. Unless otherwise stated, the tests are conducted
on an interpolative training set, by randomly selecting 80% of
the images. A 20-fold cross validation is performed. When an
extrapolative training set is used, the algorithm is trained on
the first 80% of the images, meaning that some individuals
appear only in the test set. Three cost functions are tested for
the eigenfaces: (i) a Gaussian function, such that it is most
expensive to place sensors in the center of the face, (ii) a step
function uniformly penalizing sensors in the middle ninth of
the photographs, and (iii) a step function penalizing the left
third of the images. All three cost functions are plotted in
the left column of Figure 4. The range of values used for the
parameter γ is dependent on the cost function considered. With
the Gaussian cost function, γ ranges from 0 to 1.9×105, while
the two step functions both take γ between 0 and 6× 104.

The next data set we consider is the NOAA OISST V2
mean sea surface temperature set [53]–[55], comprising
weekly global sea surface temperature measurements between
the years of 1990 and 2016. There are a total of 1400 snapshots
on a 360× 180 spatial grid. The algorithm is trained on 1100
snapshots (randomly selected for the interpolative training
set, or the first 1100 in sequence for the extrapolative set)
and tested on the remaining 300. Ten cross validations are
performed for the interpolative trials. The cost function used
is a step function that penalizes placing sensors too far from
shore, being zero for locations one and two pixels off land,
and equal to one everywhere else. Values of γ range from 0
to 225.

Our final example is the vortex shedding of a fluid flowing
around a stationary cylinder. The flow data is generated
using the immersed boundary projection method [56], [57]
to numerically simulate the Navier-Stokes equations with
Reynolds number 100. There are 151 snapshots in time, each
on a 199 × 449 spatial grid. The training sets consist of 120
snapshots. As before, these snapshots are chosen randomly
for the interpolative training set, while the first 120 are taken

in sequence to form the extrapolative training set. In the
interpolative case, 30 cross validations are performed. We
choose a cost function that is uniformly equal to one in the
lower half of the domain and zero in the upper half, to exploit
the symmetry of the system. Values of γ are between 0 and
15.

These data sets were chosen because they represent classic
examples from several branches of the sensor placement
literature. The face data has been used to demonstrate classi-
fication methods by discriminating between men and women,
or between individuals, as in [2], [24], [58]. Sensor placement
for ocean data reconstruction has a long history, including the
papers [4]–[6], in which sensors were placed at the extrema of
the POD modes. The flow behind a stationary cylinder is a pro-
totypical example from the reduced order modeling commu-
nity, which often uses the empirical interpolation method [10]
or the discrete empirical interpolation method (DEIM) [11],
[12] to create a low-rank model of a system for future state
prediction. See [9] and the citations therein for a more in-depth
exploration of the data sets and how they have been analyzed
historically. Some of the existing methods, such as gappy POD
and DEIM, could be adapted to include a heterogeneous sensor
cost function; however, we have chosen to adapt the pivoted
QR algorithm because it is robust, computationally efficient,
and when unmodified it provides near-optimal results [9],
[12], [32]. Many of the existing methods for these problems
perform some pre-processing, often by applying the algorithm
to singular vectors (or POD modes) of the data rather than
the data directly, a concept which we will explore in the next
section.

Remark 3: The weighting γ is an arbitrary scalar, and its
values were chosen by trial and error to ensure that a cost-
error curve was traced out in sufficient detail for each data set
and cost function.

V. DATA, SINGULAR VECTORS, AND RANDOM
PROJECTIONS

Before proceeding to the cost-constrained placement exam-
ples, we will first briefly discuss the question of data pre-
processing for sensor placement. In the notation of Section II,
pre-processing refers to the process of creating the matrix
Ψtr from the training data Xtr (we then apply the QR-based
algorithm to Ψtr). When selecting p sensors, a common choice
for the matrix Ψtr is to set it as the first p right singular
vectors of Xtr [9], [11], [12]. Inspired by the randomized
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Fig. 2. Reconstruction error versus the number of sensors for the three data sets described in Section IV, using p SVD modes, 2p randomized linear combinations
(abbreviated RM in the legend, for randomized modes), and the raw data without pre-processing. The top row shows a log plot of the normalized singular
values, with the vertical gray line indicating the Gavish-Donoho cutoff r [59]. The remaining plots show the average reconstruction error given sensors placed
by performing the unmodified column-pivoted QR decomposition on Ψtr formed using the three pre-processing methods discussed in the text. The first
column provides eigenface results, the second gives sea surface temperature reconstruction errors, and the third shows errors for the flow behind a cylinder
on a log scale. The middle row of the figure shows interpolative error, where the training set consists of a randomly-chosen subset of the data, while the
bottom row gives the extrapolative data, which takes the first 80% of the parameter space. All plots also show a rough estimate of the minimum error at a
given number of sensors (the solid red line), obtained by projecting the full image onto the SVD modes.

linear algebra community [35], [36], we also consider setting
Ψtr = GXtr, where the entries of G ∈ R2p×m are drawn
from a standard normal distribtuion, i.e. we set the rows of
Ψtr to be random linear combinations of the rows of Xtr.
We also consider the performance when setting Ψtr = Xtr,
i.e. the performance without pre-processing. The number of
singular vectors or random linear combinations used is open-
ended; we found that, as described above, p singular vectors
and 2p random linear combinations gave reasonably optimal
performances for each pre-processing technique, respectively.

Our data sets are the Extended Yale Face Database B, the

Optimally Interpolated Sea Surface Temperature data set from
NOAA, and simulation data for fluid flow behind a cylinder.
For the face and sea surface temperature data, we consider both
interpolative and extrapolative training sets. In this section, we
do not make such a distinction for the fluid simulation data,
as it is much lower rank and periodic in time.

The top row of Figure 2 shows the spectrum of normalized
singular values for all three data sets. These plots include a
gray line at the Gavish-Donoho [59] optimal hard-threshold
cutoff, which is an estimate of the rank beyond which the
SVD modes represent additive noise. It is apparent that the
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Fig. 3. A comparison of cost versus error results with the following pre-processing methods: Taking the full raw data as a basis, Ψtr = Xtr ; taking
2p randomized linear combinations of Xtr , where p is the number of sensors; and taking Ψtr to be the first p SVD modes of Xtr . The training set is
interpolative, not extrapolative. Sensors are placed with our modified QR-based algorithm for each of the three bases and data sets, for both a comparatively
large and small number of sensors. Additionally, cost and error results are calculated for randomly-selected sensors with the first two pre-processing methods.
The randomized sensor results are cross validated as usual, and there are 100 data points per method. Randomized sensors using the SVD basis had significantly
higher reconstruction errors than any other method, and the results are not shown here. A Gaussian cost function is used for the eigenface example. The
abbreviations in the legend are explained in Table I.

fluid flow data set is fundamentally different from the other
two, having a sharp elbow at the cutoff, as opposed to a slow
decay.

The remainder of Figure 2 plots the relative interpolation
error (4) computed for the test set as a function of the number
of sensors using each of the three methods for pre-processing
(SVD modes, randomized modes, and the raw data) described
above. The sea surface temperature and eigenface data sets
both have an interesting feature not present in the fluid flow
data: the error from the SVD basis has a local minimum at
a very small number of modes — five for the temperature
data and approximately seventy for the eigenfaces. While the
error for the interpolative training set begins to slowly decrease
again as the number of sensors is increased, the performance
of the extrapolative data gets worse as more sensors are added,
up until at least 150 sensors. This unexpected behavior reveals
that, for systems with slow singular value decay, there is an
overfitting problem when using SVD modes which occurs well
before those modes correspond to additive sensor noise. We
believe that the source of this problem is in the formation of
the interpolant T̂(J) via the formula T̂(J) = Ψtr†

·JΨtr. When
the rows of Ψtr consist of right singular vectors of Xtr —
which generally correspond to smooth, large scale structures

— some of the small-scale variability of the data is lost and the
interpolant overfits to these smoother modes. The problem is
that, with slow singular value decay, an additional singular
vector may not resolve much more fine structure than the
previous.

The reconstruction errors for sensors based on random linear
combinations or the raw data do not have this behavior (except
for a weak effect with extrapolative sea surface temperature
data), nor do any of the cylinder trials. Indeed, the error for
the random linear combinations and the raw data behaves as
expected, decaying at a rate that follows the error obtained
from projecting the test set onto the first p singular modes of
the training set (this rough indicator of optimal behavior is
plotted as a solid red line in the figure).

We make a few conclusions based on these pre-processing
results. If the goal of pre-processing is to improve the quality
of the sensors, then it appears that using no pre-processing
is the preferred method, except when placing a very small
number of sensors, where the SVD mode method displays an
advantage. If the goal of the pre-processing is to reduce the
size of the problem and speed up the optimization procedure,
then it appears that using randomized linear combinations of
the modes is preferable to using a limited number of SVD
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Fig. 4. Average sensor locations for eigenface reconstruction for three different cost functions. The cost functions are plotted in the left column, where white
indicates regions of highest cost and black shows regions of zero cost. The three central columns show the locations of 200 sensors placed by the QR-based
algorithm, averaged over 20 cross validations, for increasing values of the weighting factor γ. The final column plots cost and error against γ for each cost
function, with bands indicating error bars. Both interpolation and extrapolation results are given. The vertical gray lines indicate the value of γ at which the
sensors are plotted in the middle column. The bottom row shows typical example reconstructions of one of the photos, for reference.

modes. (Note that these SVD modes would have to be com-
puted with an accelerated procedure in order for using them
to represent a speed-up for the QR-based sensor placement
algorithm, again, with the caveat that SVD modes behave
better for a small number of sensors.)

VI. APPLICATIONS

When factoring in the effect of cost, we observe behavior
similar to the cost-free case analyzed in the previous section,
with respect to pre-processing. Figure 3 provides an overview
of the performance for the various pre-processing methods,
now with a non-zero cost associated with each location. In
the plots, we generate several cost, error pairs for each pre-
processing technique by varying the cost function weighting
γ in the QR-based algorithm. We also plot the performance of
randomly drawn sensors for the sake of comparison. All three
data sets are considered, with both a large and small number
of sensors. See Table I for details on the figure labels.

For both the eigenface and sea surface temperature data sets,
using the raw data at 100 sensors leads to the lowest error

Color Method Description

Raw, QR Performing the QR-based algorithm
directly on the raw data.

Raw, RS Randomly-placed sensors, using the
raw data as a basis.

RM, QR,
2p

The QR-based algorithm on the ran-
domized modes Ψtr = GXtr , G ∈
R2p×m a matrix with randomized
entries.

RM, RS,
2p

Using randomly-selected sensor lo-
cations, and 2p randomized modes as
a basis.

SVD,
QR, 1p

The QR-based algorithm on the first
p SVD modes.

TABLE I
A BRIEF DESCRIPTION OF THE SENSOR PLACEMENT METHODS USED TO

CREATE FIGURE 3, AND THE COLORS IN WHICH THEY ARE PLOTTED.

at a comparable cost, and randomized linear combinations
with 2p modes gives the next lowest error, followed by SVD
with p modes. At 5 sensors, the latter is reversed, with SVD
performing comparably to or better than the raw data, as is
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Fig. 5. The cost landscape for eigenface reconstruction for all three cost functions, with cost plotted as a two-dimensional color map against error and the
number of sensors. Contours indicate lines of constant cost.

Fig. 6. Cost versus error for eigenface reconstruction with three different cost
functions. Results are given for the case of 200 sensors.

the case with both trials for the fluid flow behind a cylinder.
We observe that our QR-based method generally outperforms
the best randomly-chosen sensors. The randomized sensors
sometimes yield lower errors, particularly with a large number
of sensors, but our principled method is capable of producing
lower costs. We note that the randomized data performs worse
than the raw data in all examples, but the behavior is consistent
and may be worth the reduced computational cost in some
applications.

In the remainder of this section, we more closely analyze
the performance of our algorithm for each of the data sets. For
brevity, we consistently use a randomized linear combination
of data vectors for the pre-processing technique in these
examples, noting that the behavior described above would be
maintained if all techniques were tested.

A. Eigenfaces

The algorithms are first tested on the eigenface data set. All
three cost functions and a few corresponding sensor arrays
are shown in Figure 4. These are the average locations from
placing 200 sensors over the twenty cross-validation runs,
shown as a scatter plot on top of the dominant eigenface mode.
Marker size and color indicate the frequency with which a

Fig. 7. Cost versus error for eigenface reconstruction with a Gaussian cost
function, for several different numbers of sensors.

sensor was placed at a given location, with white indicating
the most frequent, shading through yellow and red to black
for the least frequent. As expected, when the cost function
weighting is increased, sensors are gradually pushed out of
the regions of higher cost. This allows the total cost to be
lowered at the expense of decreasing reconstruction accuracy,
as demonstrated in the right-hand column of the figure, which
plots cost and error on separate axes, as a function of γ. Note
that γ is an arbitrary weighting, and the same value of γ can
have very different effects depending on the cost function.
Extrapolative cost and error are shown in the same panel,
where the extrapolative error is higher than the interpolative,
at an identical cost. Additionally, the bottom row of the figure
shows several reconstruction examples for one of the faces.

For many practical applications of these methods, the fi-
nal goal will be to minimize reconstruction error given a
predetermined budget. To that end, cost-error landscapes are
constructed by calculating sensor array cost and reconstruction
error for different numbers of sensors. The results are shown in
Figure 5, which shows the landscapes for each cost function,
plotted as a color map according to cost. Cost contours on
this color map represent a hypothetical budget, so the optimum
configuration for a given budget can be found by following the
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Fig. 8. Sensor locations for sea surface temperature reconstruction with 200 sensors. The cost function considered was a step function which was zero up
to two pixels off land and equal to one everywhere else. Locations are shown for three different values of the weighting factor γ, and are averaged over ten
cross validations. Size and color of a data point indicate the frequency with which a sensor was placed there. The fourth image plots cost and error against
γ, for both interpolative and extrapolative data sets. The bottom row shows a comparison of an example temperature snapshot along with two reconstructions
of it yielding two different accuracies.

Fig. 9. The cost landscape for sea surface temperature reconstruction, plotted
as a color map against error and the number of sensors. Contours show lines
of constant cost.

appropriate contour to the lowest possible error. Note that the
upper edges of the contour plots indicate the minimum cost
and maximum error for a given number of sensors, and the

Fig. 10. Plots of cost versus error for sea surface temperature reconstruction,
with varying numbers of sensors.
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Fig. 11. Sensor locations and reconstructions of the flow behind a cylinder, obtained by the QR-based algorithm, using 14 sensors. The cost function was a
step function blocking the lower half of the domain. The first three plots show the placements of the sensors averaged over 30 trials. The fourth shows cost
and error plotted against γ, where the bands indicate error bars. The bottom row gives a comparison of the true image of a snapshot along with two different
reconstructions.

lower edges indicate the minimum error and maximum cost.
Cross sections of the cost landscapes as plots of cost versus

error are given in Figures 6 and 7. The former shows cross
sections for each of the three cost functions, using 200 sensors,
and the latter shows cost versus error for a Gaussian cost
function with 25, 100, 200, and 300 sensors.

B. Sea surface temperature

Next we consider the sea surface temperature data set.
Average sensor locations over ten cross validations with 200
sensors are shown in Figure 8, as a scatter plot where the
size and color of a data point indicate the frequency with
which a sensor was placed in that location (blue being the
least frequent, red being the most frequent). As the cost
function weighting is increased, more sensors move within
the unblocked regions offshore, until the cost reaches zero.
Plots of cost and error as functions of γ are given in the fourth
panel, and the bottom row shows two example reconstructions.
As with the eigenfaces, the interpolative trial has a much
lower error than the extrapolative trial. Notice that although
the reconstruction error increases as cost decreases, here the
error does not even reach 3%, even when the cost is zero.

The landscape of cost as a function of error and the number
of sensors is shown in Figure 9, again visualized as a color
map with contours of constant cost. Cross sections of cost

versus error for 25, 100, 200, and 300 sensors are shown in
Figure 10.

C. Fluid flow around a cylinder

Finally, we test the algorithm on the fluid flowing around
a stationary cylinder. This data set is low-rank, periodic, and
vertically symmetric, making it a significant contrast to the
previous two examples. The vertically symmetric cost function
further allows the algorithm to take full advantage of the
symmetry of the fluid flow. In Fig. 11, sensor locations for
several values of γ are shown. The locations are shown for
14 sensors, averaged over the 30 cross validations and then
graphed as a scatter plot on top of an example fluid flow
snapshot. The size and color of a data point indicate how
frequently a sensor was placed at its location, with white
being the most frequent and black being the least frequent.
As expected, when γ is increased, the sensors migrate until
they occupy the upper half of the plane.

The fourth panel of the figure plots the cost and error on
separate axes, as functions of γ. Because of the symmetry of
the data set, the reconstruction error is essentially unchanged
with γ, even as the cost goes to zero. Furthermore, because the
flow is periodic, the extrapolative data performs slightly better
than the interpolative data. The figure’s bottom row shows
example reconstructions of a snapshot.
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Fig. 12. The cost landscape for reconstruction of a fluid flow behind a
cylinder. Instead of the color maps made for the previous two data sets, curves
of error versus the number of sensors are shown for high and low values of
γ. The gray band indicates the maximum variation in the error.

Fig. 13. Plots of cost versus error for cylinder flow reconstruction, with
varying numbers of sensors.

The fluid flow cost-error landscape is shown in Fig. 12.
Notice that there is hardly any variation in the error, so rather
than plotting cost as a color map, the error versus number of
sensor curves for γ = 0 (highest cost) and γ = 15 (lowest
cost) are shown. These curves are essentially identical, further
emphasizing that for this particular data set and cost function,
the total cost can be lowered with no penalty to the error. Cost
versus error plots are given in Fig. 13, which shows results for
4, 8, 12, and 20 sensors. Regardless of the number of sensors,
these cross sections are essentially vertical lines, within the
standard deviation of the error.

Data set m n p t

Yale Faces 1931 1024 400 0.82
Cylinder 129 89351 20 0.52
Sea Surface Temperature 1100 44219 300 25.65

TABLE II
AVERAGE RUN TIME INFORMATION FOR RUNNING ALGORITHM 1 ON THE

RAW DATA FOR EACH APPLICATION.

D. Run time for the experiments

To get a sense of how long it takes to compute sensor
locations, we provide some average run time information in
Table II. Note that m denotes the number of training samples,
n denotes the dimension of the data, p denotes the number
of sensors, and t denotes the average run time in seconds2

for a single value of γ. For all applications, p is selected
to be the maximum number of sensors placed in any of the
experiments above. The times are averaged over 26 runs for
the Yale faces data, 5 runs for the sea surface temperature
data, and 29 runs for the cylinder flow data. All times are for
the raw data without preprocessing.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have developed a QR-based greedy algorithm to place
sensors for reconstruction with a cost constraint on sensor
locations. This algorithm is tested on three different data sets,
eigenfaces, weekly sea surface temperature data, and vortex
shedding of a fluid flowing around a cylinder. In all cases, the
method is demonstrated to be capable of lowering sensor cost
at the expense of marginal increases in reconstruction error.

It is also shown that with or without the inclusion of a cost
function, data sets with slow singular value decay have better
results by pre-processing the data through a randomized linear
combination of modes, rather than through SVD-based rank re-
duction. Randomized linear combinations lead to significantly
lower reconstruction errors, except at a very low number of
sensors.

In fact, for these data sets with slow singular value decay,
SVD modes behave in an unexpected way at a low number
of modes. The reconstruction error decreases sharply, even
surpassing the error obtained by using the full raw data in the
case of sea surface temperatures, before increasing again as
more sensors are added. This suggests that the SVD is over-
fitting well before the Gavish-Donoho cutoff, an idea which
warrants further exploration in future work. The results also
imply that there may be some other pre-processing method
which can take advantage of both the SVD behavior at a low
number of sensors and the random linear combination or raw
data behavior at a higher number of sensors. This will also be
explored in the future.

In the meantime, the algorithm presented here provides a
way to place sensors under a cost constraint, which could
have applications in manufacturing, atmospheric sensing, fluid
flow sensing, and many more fields. Specifically, the algorithm
allows one to address three critical engineering design princi-
ples in regard to sensors placement: (i) For a fixed budget

2All experiments were run on a laptop with an Intel Core i7-6600u CPU
(2.60 GHz, 4 cores) and 16 Gb of RAM.
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of sensors, where are the best measurement locations, (ii)
What is the minimal number of sensors required to achieve a
given reconstruction error, and (iii) How well can inaccessible
regions be reconstructed in practice. Depending upon the
application, one or all of these questions may be of central
concern. The computationally tractable approach presented
here provides a principled mathematical method for answering
these questions.

One weakness of the approach advocated here is the lack of
performance guarantees. We believe that it is worth exploring
in a systematic manner both the effect of using a more cost-
intensive selection scheme, as in the Gu and Eisenstat ap-
proach [31], and the effect of using performance metrics other
than the determinant, like the frame potential [18] and mutual
information [39], [40], in the cost-constrained reconstruction-
oriented setting. This will be the subject of future research.
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