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Abstract The eigenvalues and eigenfunctions of the Stokes operator have been
the subject of intense analytical investigation and have applications in the study
and simulation of the Navier–Stokes equations. As the Stokes operator is second-
order and has the divergence-free constraint, computing these eigenvalues and the
corresponding eigenfunctions is a challenging task, particularly in complex geome-
tries and at high frequencies. The boundary integral equation (BIE) framework
provides robust and scalable eigenvalue computations due to (a) the reduction
in the dimension of the problem to be discretized and (b) the absence of high
frequency “pollution” when using a Green’s function to represent propagating
waves. In this paper, we detail the theoretical justification for a BIE approach to
the Stokes eigenvalue problem on simply and multiply-connected planar domains,
which entails a treatment of the uniqueness theory for oscillatory Stokes equations
on exterior domains. Then, using well-established techniques for discretizing BIEs,
we present numerical results which confirm the analytical claims of the paper and
demonstrate the efficiency of the overall approach.
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1 Introduction

The planar incompressible Stokes equations describe creeping flows in two dimen-
sions. Let Ω ⊂ R2 be a bounded domain with C2 boundary denoted by Γ . The
Stokes eigenvalue problem is to find values k2 such that

−∆u+∇p = k2u in Ω ,

∇ · u = 0 ,
(1)

subject to boundary conditions, has a non-trivial solution (u, p). In this work, we
consider the eigenvalue problem subject to the Dirichlet boundary condition,

u = 0 on Γ . (2)

It is well known that the values k2 are necessarily real and positive and that
there is a countable collection of such values 0 < k21 ≤ k22 ≤ . . . ↑ ∞, counting
multiplicities.

Remark 1 When k = iα, the differential equation (1) is known as the modified
Stokes equation. As there appears to be no preferred name for the equation with
real-valued k, we will refer to (1) as the oscillatory Stokes equation.

The eigenvalues (and eigenfunctions) of the Stokes operator have applications
in the stability analysis of stationary solutions of the Navier–Stokes equations
[50], in the study of decaying two dimensional turbulence [58], and as a trial basis
for numerical simulations of the Navier–Stokes equations [9]. The eigenvalues and
eigenfunctions of the Stokes operator are also the subject of intense analytical
investigation [63,62,52,13,4,43,34,3], especially as they relate to the eigenvalues
and eigenfunctions of the Laplacian. Some of these latter studies are formulated in
terms of the “buckling” eigenvalues of the biharmonic operator (so-called because
the lowest eigenvalue represents the critical buckling load of an idealized elastic
plate [63,62,52]), which are equivalent to the Stokes operator eigenvalues on simply
connected domains [34]. This can be seen through the stream function formulation
of the oscillatory Stokes equation, i.e. setting u = ∇⊥ψ where ψ now satisfies

−∆2ψ = k2∆ψ in Ω .

Note that the buckling problem enforces the clamped, or first Dirichlet, boundary
condition on ψ

ψ = ∂νψ = 0 on Γ.

On a multiply connected domain, there are Stokes eigenfunctions which do not
have a corresponding clamped stream function, so that the buckling eigenvalues
are a subset of the Stokes eigenvalues.

Historically, the Stokes eigenvalue problem serves as a common model prob-
lem for numerical eigenvalue analysis with a constrained, second-order operator
(or a fourth-order operator through the connection to buckling above). Further,
numerical simulation has long played an important role in the analyses cited above
— both for computing the eigenvalues and eigenfunctions on domains of practical
interest and in forming new conjectures.
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Borrowing the language of [68], which concerns the eigenvalues of the Laplacian
(also known as the membrane or “drum” problem), the numerical treatment of
the Stokes eigenvalue problem can be divided into two basic approaches. The first
class of methods directly discretize the differential operator, typically with a finite
element basis, and the eigenvalues are found as the eigenvalues of the discrete
system. The second class of methods reformulate the oscillatory Stokes equations
as a boundary integral equation (BIE) which is discretized. The eigenvalues are
then found by a nonlinear search for the values of k where the BIE is not invertible.

There is a large body of research on the first class of methods for the Stokes
eigenvalue problem. We do not seek to review this literature here, but point to
[33,56,48,11,31,18,45,30,17] for some representative examples.

As noted in [68], integral equation based methods provide several advantages.
Because the BIE is defined on the boundary alone, there is a reduction in the
dimension of the domain to be discretized. Thus, while O(k2) unknowns are re-
quired to resolve an eigenfunction with eigenvalue k2 throughout Ω, as is necessary
in standard finite element and finite difference methods, only O(k) unknowns are
needed to resolve the density defined on Γ for the corresponding layer potential rep-
resentation of the eigenfunction. Further, it is known that standard finite element
approaches suffer from high-frequency “pollution” in two and three dimensions for
oscillatory problems and, hence, the computation of larger eigenvalues [5]. In the
original context, pollution refers to the following phenomenon. When solving the
Helmholtz equation in dimension greater than one, the accuracy of the Galerkin
solution of a problem is indeed optimal in the sense that it differs by a constant
factor from the error in the best approximation of the true solution in the finite
element space. But this factor grows as a function of the frequency k [5]. Thus, at
higher frequencies, a finite element method requires more degrees of freedom than
suggested by the number of degrees of freedom required to resolve the solution. In
constrast, a standard BIE discretization does not suffer from this effect.

Further, Zhao and Barnett [68] show how to alleviate some of the costliness of
the nonlinear optimization introduced by formulating the problem as an integral
equation. The standard approach searches for “V”-shaped minima of the singu-
lar values of the BIE; see, for instance, [65]. Instead, Zhao and Barnett utilize
the Fredholm determinant (see section 3.6) which, for certain BIEs, is an ana-
lytic function of k with roots precisely when k2 is an eigenvalue. The Fredholm
determinant can be estimated using a Nyström discretization of the BIE [12,68].
Then, the eigenvalues can be estimated efficiently by using high order root finding
methods applied to the discretized determinant.

With the efficiency of the approach of [68] for the drum problem in mind, we
develop an integral equation based method for the Stokes eigenvalue problem. This
requires that a layer potential representation of the solution of (1) be given and
that the resulting BIE is not invertible precisely when k2 is an eigenvalue. The first
requirement is straightforward to satisfy because well-known layer potential repre-
sentations for the modified Stokes equation [53,10,32,42] are directly applicable.
Proving the invertibility of the associated operators away from the eigenvalues is a
more involved task and forms the bulk of the theoretical component of this paper.
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1.1 Relation to other work

BIE methods, as described above, are used to compute eigenvalues in a variety of
applications. These include eigenvalue problems for the Laplace operator [46,61,1,
68], the buckling problem [38,3], Maxwell’s equations [37], quantum “billiards” [6,
66,67,7], clamped plates [44], and fluid-structure interactions [36], among others.
In some applications, e.g. electrostatic plasmon resonances [47], it is the eigenvalues
of the integral operators themselves which are of interest.

We note that the BIE method can generally be divided into first-kind for-
mulations, i.e. formulations where the BIE operator is compact, and second-kind
formulations, i.e. formulations where the BIE operator is of the form I −Kk with
Kk compact. The studies cited above contain examples of both types of formula-
tions and a variety of optimization techniques for finding the eigenvalues k2. The
previous integral equation studies of the “buckling” eigenvalue problem (which is
equivalent to the Stokes problem on simply connected domains [34]) typically rely
on first-kind integral equation formulations of the underlying partial differential
equation (PDE), based on layer potentials [38] or the method of fundamental so-
lutions [3]. In [38], it is suggested that an advantage of the layer potentials in that
study is that the corresponding integral kernels are relatively smooth and that
quadrature is straightforward. Since the publication of that study, high-quality
singular quadrature methods have become available for a variety of singularities
on curves and surfaces, see, e.g., [40,2,16,27,15,14,39]. In [3], domains with cor-
ners are considered. The method of fundamental solutions, which does not directly
discretize the domain boundary, offers significant appeal in such a setting because
efficient singular quadrature is not as well understood for a domain with corners
(though progress is being made [26,59,55,25]) and the boundary integral operators
are not as well behaved.

In this paper, we develop a second-kind method for the Stokes operator because
of the aforementioned progress in the area of singular quadrature and the neces-
sity of a second-kind formulation to the efficient Fredholm determinant approach
advocated in [68].

1.2 Paper outline and contributions

The rest of this paper proceeds as follows. In section 2, we set the notation, provide
some mathematical preliminaries, and review properties of single and double layer
potentials for the oscillatory Stokes equations. Then, in section 3, we develop the
necessary theory for proving the main results of this work (theorems 8 and 10),
which show that the BIEs resulting from these layer potential representations are
not invertible precisely when k2 is an eigenvalue. These theoretical developments
include a detailed discussion of the uniqueness of oscillatory Stokes boundary value
problems in exterior domains. To the best of our knowledge, the invertibility and
uniqueness results are new to the literature. Section 3.6 then outlines how the
Fredholm determinant can be used in the oscillatory Stokes context. In section 4,
we describe the numerical methods we use to discretize the BIEs and to perform
determinant calculations. While the underlying methods are well-established, the
combination of a high-order singular quadrature rule and a fast-direct method for
determinant evaluations in a BIE framework is novel. At the moderate frequencies
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considered in this paper, we find that standard fast-direct solvers provide a rea-
sonably efficient determinant evaluation. We also present numerical experiments
which demonstrate some of the paper’s analytical claims as well as the effectiveness
of the overall framework. Finally, we provide some concluding thoughts, describe
plans for future research, and outline some open questions in section 5.

2 Mathematical Preliminaries

In this paper, vector- and tensor-valued quantities are denoted by bold letters
(e.g. h and T). Subscript indices of non-bold characters (e.g. hj or Tij`) are used
to denote the entries within a vector or tensor. We use the standard Einstein
summation convention; i.e., there is an implied sum taken over the repeated indices
of any term (e.g. the symbol ajbj is used to represent the sum

∑
j ajbj). If x =

(x1, x2)ᵀ, then x⊥ = (−x2, x1)ᵀ. Similarly, ∇⊥ = (−∂x2 , ∂x1)ᵀ. Upper-case script
characters (e.g. K) are reserved for operators on Banach spaces, with I denoting
the identity. Given a set X, we denote the closure of X by X.

For a velocity field u and pressure p, let σ(u, p) denote the Cauchy stress
tensor given by

σ(u, p) = −pI + 2e(u) , (3)

where e(u) is the strain tensor given by

eij(u) =
1

2

(
∂xjui + ∂xiuj

)
. (4)

When it is clear from context, we will drop the dependence of σ on u and p. If
Γ is the boundary of a region Ω and ν is the outward normal to Γ , the surface
traction t on Γ is the Neumann data, i.e.

t = σ · ν . (5)

We seek solutions of (1) in the space

A(Ω) = {(u, p) s.t. u ∈
(
C2(Ω)× C2(Ω)

)
∩
(
C(Ω̄)× C(Ω̄)

)
, p ∈ C1(Ω)∩C(Ω̄)} ,

(6)
where Ω is an open domain.

2.1 Green’s functions

Let Lx denote a linear differential operator. A fundamental solution G(x,y) of
Lx satisfies the equation LxG(x,y) = δy(x) in the distributional sense, i.e. for
sufficiently smooth f

Lx
∫
R2

G(x,y)f(y) dy = f(x) .

We consider here free-space Green’s functions, i.e. fundamental solutions which
satisfy appropriate radiation conditions as |x− y| → ∞. The Green’s function of
the oscillatory biharmonic equation,

∆(∆+ k2)u = 0 ,
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is given by

GBH(x,y) =
1

k2

(
1

2π
log |x− y|+ i

4
H

(1)
0 (k|x− y|)

)
, (7)

where k is the Helmholtz parameter in the oscillatory biharmonic equation, and
H1

0 (r) is the Hankel function of the first kind of order zero. Note that this is a
scaled difference of the Green’s function for Laplace, i.e.

GL(x,y) =
1

2π
log |x− y| ,

and the Green’s function for the Helmholtz equation

GH(x,y) = − i
4
H

(1)
0 (k|x− y|) .

2.2 The Fredholm Alternative

We require some standard results from the theory of Fredholm integral equations.
Interested readers may consult [57,20,41], among others, for the relevant back-
ground.

We first recall some definitions. Let X and Y be Banach spaces with a non-
degenerate bilinear form 〈·, ·〉 : X × Y → C.

– Two operators A : X → X and B : Y → Y are adjoint operators if 〈Aφ,ψ〉 =
〈φ,Bψ〉 for every φ ∈ X and ψ ∈ Y .

– For an operator M : X → X, we can define the range R(M) as the set
{φ ∈ X : ∃φ0 ∈ X with Mφ0 = φ} and the null space N(M) as the set
{φ ∈ X :Mφ = 0}.

– An operator A is said to be compact if AV is a compact set for any bounded
subset V ⊂ X.

– Given a subspace V ⊂ X, we can define the subspace V ⊥ ⊂ Y as the set
V ⊥ = {ψ ∈ Y : 〈φ, ψ〉 = 0 for each φ ∈ V }, with the analogous definition for
subspaces of Y .

Operators of the form I−A have existence and uniqueness properties analogous
to matrices. This is known as the Fredholm Alternative; we present the version
provided in [20].

Theorem 1 (Fredholm Alternative [20]) Let X and Y be Banach spaces and
〈·, ·〉 : X×Y → C be a bilinear form. Suppose that A : X → X and B : Y → Y are
compact adjoint operators. Then dimN(I −A) = dimN(I −B) ∈ N, R(I −A) =
N(I − B)⊥, and R(I − B) = N(I − A)⊥.

2.3 Properties of the oscillatory Stokes layer potentials

Recall that, in the case k = iα for some real-valued α, the oscillatory Stokes
equations (1) are known as the modified Stokes equations and are of particular
interest for their application to the analysis and numerical simulation of unsteady
flow [53,10,32,42]. The equations are well-studied in that setting and integral
representations which lead to second-kind integral equations have been developed.
We review some of the relevant results here, translating to the oscillatory setting.
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2.3.1 Oscillatory Stokeslets and stresslets

Consider the solution of (1) where a δ-mass centered at y with strength f has
been added to the right-hand side of (1), i.e.

∇p−∆u− k2u = δyf , (8)

∇ · u = 0 .

Recall that

∆GL(x,y) = δy(x) . (9)

Proceeding as in [10], we substitute (9) into (8) and take the divergence, obtaining

∆p = ∆
(
∇GL(x,y) · f

)
.

Then, setting

p = ∇GL(x,y) · f ,

we obtain

u = −(∆+ k2)−1(∆GLf −∇(∇GL · f))

= (−∆+∇⊗∇)GBHf .

The tensor

G = −I∆GBH +∇⊗∇GBH (10)

is then the analog of a Stokeslet [53] for (1).
A related object is the stresslet, which is defined in terms of the stress tensor of

the velocity, pressure pair induced by a Stokeslet. For these tensors, we find that
it is more convenient to express them in index notation with the Einstein index
summing convention. Recall that the stress tensor σ is defined as

σij = −pδij +
(
∂xjui + ∂xiuj

)
,

where δij is the standard Kronecker delta notation. The stresslet T is defined to
be

Tij` = −∂xjG
Lδi` + ∂x`

(
−∆GBHδij + ∂xi

(
∂xjG

BH
))

+ ∂xi

(
−∆GBHδ`j + ∂x`

(
∂xjG

BH
))

. (11)

Let ui = Gijfj and p = ∂xiG
Lfi be a solution of the Stokes equations induced by

a Stokeslet. Then the corresponding stress tensor is given by σi` = Tij`fj .
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2.3.2 Layer potentials

We now use the Stokeslet and stresslet to define the single and double layer po-
tentials for the oscillatory Stokes problem. For x ∈ R2, the single layer potential
with density µ is defined to be

S[µ](x) =

∫
Γ

G(x,y)µ(y) dS(y) . (12)

We use the notation σS[µ] to denote the stress tensor of the single layer at any
given point x ∈ R2 \ Γ .

For x ∈ R2 \ Γ , the double layer potential with density µ is defined to be

D[µ](x) =

∫
Γ

(T·,·,`(x,y)ν`(y))ᵀ µ(y) dS(y) , (13)

where ν denotes the outward unit normal to the boundary. If we write µ = νµν +
τµτ , where τ = ν⊥ is the positively oriented unit tangent to the curve, then we
have

(T·,·,`(x,y)ν`(y))ᵀ µ(y) =
(
−∇GL(x,y) + 2∇⊥∂ντGBH(x,y)

)
µν(y)

+∇⊥ (∂ττ − ∂νν)GBH(x,y)µτ (y) . (14)

Let S[µ] : C(Γ ) → C(Γ ), and D[µ] : C(Γ ) → C(Γ ) denote the restrictions of
the layer potentials S[µ] and D[µ] on the boundary Γ , i.e. for x ∈ Γ ,

S[µ](x) =

∫
Γ

G(x,y)µ(y) dS(y) (15)

and

D[µ](x) = P.V.

∫
Γ

(T·,·,`(x,y)ν`(y))ᵀ µ(y) dS(y) , (16)

where the P.V. indicates that the integral is to be evaluated in the principal value
sense.

For two vector valued functions f and g defined on Γ , consider the bilinear
form

〈f , g〉 =

∫
Γ

f · gdS . (17)

The definition of the adjoint used throughout the paper will be the one induced
by this form.

The adjoint ofD with respect to the above bilinear form is of particular interest;
and is given by

Dᵀ[µ](x) = P.V.

∫
Γ

(T·,·,`(x,y)ν`(x))µ(y) dS(y) . (18)

In the following lemma, we review the limiting values of the layer potentials S
and D on the boundary Γ .
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Lemma 1 (Jump conditions) Suppose that Ω is a bounded region with a C2

boundary Γ . Let ν(x) denote the outward pointing normal at x ∈ Γ . Suppose that
µ ∈ C(Γ ). Then S[µ] is continuous across Γ , and the exterior and interior limits
of the surface traction of D[µ] are equal. Furthermore, for x0 ∈ Γ ,

lim
h↓0+

σS[µ](x0 ± hν(x0)) · ν(x0) = ∓1

2
µ(x0) +Dᵀ[µ](x0) (19)

lim
h↓0+

D[µ](x0 ± hν(x0)) = ±1

2
µ(x0) +D[µ](x0) . (20)

The above expressions are derived by noting that the leading order singularity
of these integral kernels is the same as for the original Stokes case, so that the
standard jump conditions for Stokes [35,53] apply.

Lemma 2 Suppose that Ω is a bounded region with a C2 boundary Γ . Then the
operators S and D defined above are compact operators on C(Γ ) × C(Γ ) and
L2(Γ )× L2(Γ ).

Compactness is proved by considering the asymptotic expansion of each kernel
about x = y and noting that each is at most weakly singular.

2.3.3 Representation theorem

In the following theorem, we sketch the proof of the equivalent of the Green’s iden-
tity for oscillatory Stokes setting, which is well-known in the Stokes and modified
Stokes settings [53,10,42].

Theorem 2 Let Ω be a bounded domain with C2 boundary and let the pair (u, p)
satisfy the oscillatory Stokes equations (1) in Ω. Let t denote the surface traction
associated with (u, p). Then

S[t](x)−D[u](x) =

{
u(x) x ∈ Ω
0 x ∈ E

, (21)

where E = R2 \ Ω̄ is the exterior of the domain.

Proof Suppose that x ∈ Ω. By the definitions of G and GL, we have

u(x) =

∫
Ω

−(∆+ k2)G(x,y)u(y) +∇⊗∇GL(x,y)u(y) dV (y) .

Applying Green’s identity and the divergence theorem, we obtain

u(x) =

∫
Γ

G(x,y)∂νu−∂νG(x,y)u−∇GL(x,y)(ν·u) dS−
∫
Ω

G(x,y)(∆+k2)u dV .

Substituting the definition of the PDE and applying the divergence theorem again,
we obtain

u(x) =

∫
Γ

G∂νu− pGν − ∂νGu−∇GL(ν · u) dS . (22)

From the divergence theorem and the divergence-free properties of u and G, we
then get
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∫
Γ

G∇(u · ν)− (∇Gν)ᵀu dS = 0 . (23)

Adding (22) and (23), we get the desired result. The argument for the case x ∈ E
is similar. ut

A consequence of theorem 2 and the analyticity of GBH is

Corollary 1 Let (u, p) ∈ A(Ω) be a solution of (1). Then each component of
u(x) is an analytic function of the coordinates x in Ω.

The proof of corollary 1 follows the same reasoning as that for the Helmholtz
case; see [20, Theorem 3.5].

2.3.4 Null-space correction

Without modification, the standard layer potentials can result in rank-deficient
representations for the boundary value problems. The nature of this deficiency is
treated in section 3 but for now we introduce a standard operator used to correct
this. For any integrable density µ, let W[µ] be defined by

W[µ](x) =
1

|Γ |

∫
Γ

ν(x) (ν(y) · µ(y)) dS(y) , (24)

for any x ∈ Γ . We have

Lemma 3 Let Ω be a domain with C2 boundary and µ be an integrable function
defined on Γ . Then

– W[W[µ]] =W[µ],
– Wᵀ =W,
– W[µ− 2D[µ]] = 0,
– W[S[µ]] = 0,

where the transpose is induced by the bilinear form (17).

Proof The first two results follow from the definitions ofW and the normal vector.
The other two follow from the fact that S[µ] and D[µ] are divergence-free and an
application of lemma 1. ut

Remark 2 The operators S,D,D and Dᵀ depend on the Helmholtz parameter k
of the oscillatory Stokes equation. In places where it is essential to highlight this
dependence, in a slight abuse of notation, we will use the symbols Sk,Dk,Dk and
Dᵀ
k to denote this dependence. Similarly, we will use AΓ instead of the operator A

to highlight the dependence of the operator A on the boundary of the region Γ .

3 Fredholm analysis of the integral representations

In this section, we establish how layer potential representations of oscillatory
Stokes velocity fields can be used to compute Stokes eigenvalues. The main re-
sults show that for certain representations the resulting integral equation is not
invertible precisely when k2 is an eigenvalue. For the interior Dirichlet eigenvalue



Stokes Eigenvalues 11

problem, this is proved separately for a double layer representation on simply con-
nected domains in theorem 8 and for a combined-field representation on multiply
connected domains in theorem 10.

Before proving the main theorems, we require a number of uniqueness results
for oscillatory Stokes boundary value problems. To prove the uniqueness results,
we follow the structure presented in Colton and Kress [20, Ch. 3] for the scalar
Helmholtz equation. While uniqueness results for interior Dirichlet, Neumann,
and impedance problems follow from energy considerations and compactness ar-
guments, the proofs for the uniqueness of exterior problems are more involved. In
particular, the exterior problems are only well-posed after imposing an appropriate
radiation condition. We formulate well-posed boundary value problems for both
interior and exterior domains with Dirichlet, Neumann and impedance boundary
conditions and present uniqueness results for each.

Along with the Fredholm alternative, these uniqueness results are sufficient
to prove theorems 8 and 10. Once the main theorems are established, the details
of how to use the Fredholm determinant as a numerical tool for computing the
Stokes eigenvalues follow in a straightforward manner from the results in [68]. We
reproduce these results in the present context for completeness.

3.1 Boundary value problems — interior

Let Ω be a bounded domain with a C2 boundary denoted by Γ . We summarize
the interior Dirichlet, Neumann and impedance boundary value problems in defi-
nitions 1 to 3 below.

Definition 1 (Interior Dirichlet problem) Let f ∈ C(Ω) be given. Find
(u, p) ∈ A(Ω) such that

∆u+ k2u = ∇p x ∈ Ω ,

∇ · u = 0 x ∈ Ω ,

u = f x ∈ Γ .
(25)

Note that the divergence-free constraint for the oscillatory Stokes equations implies
a compatibility condition on the Dirichlet data f , namely that∫

Γ

f · ν dS = 0 . (26)

Definition 2 (Interior Neumann problem) Let g ∈ C(Ω) be given. Find
(u, p) ∈ A(Ω) such that

∆u+ k2u = ∇p x ∈ Ω ,

∇ · u = 0 x ∈ Ω ,

t = g x ∈ Γ .
(27)

Definition 3 (Interior impedance problem) Let h ∈ C(Ω) be given and
suppose η ∈ C with Re(η) > 0 and Im(η) ≥ 0. Find (u, p) ∈ A(Ω) such that

∆u+ k2u = ∇p x ∈ Ω ,

∇ · u = 0 x ∈ Ω ,

t− iηu = h x ∈ Γ .
(28)
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Ω1

Ω2

Ω3

Ω4

E

Fig. 1: Example of an exterior domain with four obstacles.

3.2 A radiation condition for the oscillatory Stokes equation

Let Ω be the union of a finite collection of simply connected domains, i.e. Ω =⋃m
i=1Ωi for some m ∈ N, and let E = R2 \ Ω̄ denote its exterior; see fig. 1 for

an example with m = 4. Let Γ = ∂E denote the boundary of E and ν(y) denote
the exterior normal to the point y on Γ , i.e. the normal vector pointing out of E
into Ω. For a given function f defined on Γ , the exterior Dirichlet boundary value
problem is to find a pair (u, p) which satisfies:

∆u+ k2u = ∇p x ∈ E ,
∇ · u = 0 x ∈ E ,

u = f x ∈ Γ .

In addition to the boundary condition on Γ , we must impose radiation conditions
at ∞, analogous to the Helmholtz equation.

Let Br(0) denote the disc of radius r centered at the origin and ∂Br(0) its
boundary. We propose the following radiation condition.

Definition 4 Let (u, p) satisfy the oscillatory Stokes equations in the exterior of
a bounded domain. We say that the pair (u, p) is radiating if

lim
r→∞

√
r |t− iku| → 0 , (29)

uniformly in direction where t = σ ·ν with ν = x/|x|, i.e. t is the surface traction
on ∂Br(0).

In the following lemma, we show that the oscillatory Stokeslet satisfies the
radiation condition.

Lemma 4 If Im(k) ≥ 0, the oscillatory Stokeslet, as defined in (10), satisfies the
radiation condition in Definition 4.

Proof Consider the Stokeslet induced by an arbitrary charge k2ψ at the origin
where ψ ∈ C2 is a constant. Let r = |x|, ν(x) = x/|x|, and τ (x) = ν(x)⊥. We
have



Stokes Eigenvalues 13

u(x) = k2G(x, 0)ψ

= k2
(
−I∆GBH(x, 0) +∇⊗∇GBH(x, 0)

)
ψ

= −k2
(
∇⊥ ⊗∇⊥GBH(x, 0)

)
ψ

=

(
∇⊥ ⊗∇⊥

(
1

2π
log r +

i

4
H

(1)
0 (kr)

))
ψ .

Note that derivatives of log r are o(1/
√
r) and that the pressure associated with

the Stokeslet is p = ∇GL(x) · ψ. We then have

|σ · ν(x)− iku| = |pν(x) + ∂νxu+∇(u · ν(x))− iku|
≤ |∂νxu− iku|+ |∇(u · ν(x))|+ o(1/

√
r)

≤ 1

4

∣∣∣∂νx (∇⊥ ⊗∇⊥ (H(1)
0 (kr)

))
ψ − ik

(
∇⊥ ⊗∇⊥

(
H

(1)
0 (kr)

))
ψ
∣∣∣

+
∣∣∣∇(∂τx (∇⊥ (H(1)

0 (kr)
)
· ψ
))∣∣∣+ o(1/

√
r) .

Because H
(1)
0 (kr) has the asymptotic expansion

H
(1)
0 (kr) =

√
2

πkr
ei(rk−π/4)

(
1 +O

(
1

r

))
as r →∞, we have

∣∣∣∂νx (∇⊥ ⊗∇⊥ (H(1)
0 (kr)

))
ψ − ik

(
∇⊥ ⊗∇⊥

(
H

(1)
0 (kr)

))
ψ
∣∣∣ = o(1/

√
r) .

Finally, since H
(1)
0 (kr) is radially symmetric, we have∣∣∣∇(∂τx (∇⊥ (H(1)

0 (kr)
)
· ψ
))∣∣∣ = 0 ,

so that the Stokeslet satisfies the radiation condition. ut

A consequence of the above lemma is that the oscillatory Stokes single layer po-
tential satisfies the radiation condition.

Corollary 2 Suppose that Γ is the boundary of a region Ω and is C2. Suppose
that µ ∈ C(Γ ) × C(Γ ), then the oscillatory Stokes single layer potential S[µ], as
defined in (12), satisfies the radiation condition.

The stresslet, as defined in (11), does not necessarily satisfy the radiation con-
dition. The reason for failure is the logarithmic growth of the pressure at ∞.
However, the oscillatory Stokes double layer potential does satisfy the radiation
condition if the density satisfies an integral constraint. The following lemma proves
this result.

Lemma 5 Suppose that Γ is the boundary of a region Ω and is C2. Suppose that
µ ∈ C(Γ )×C(Γ ) and satisfies

∫
Γ
µ·νdS = 0, where ν denotes the outward normal

to the curve Γ . Then, if Im(k) ≥ 0, the oscillatory Stokes double layer potential
D[µ], as defined in (13), also satisfies the radiation condition.
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Proof We only establish the decay of the pressure, which we will denote by pD;
the rest of the terms in (29) can be bounded using an argument like that for the
Stokeslet above. Because pD is harmonic in the exterior of any disc containing Γ ,
it is sufficient to show that |∇pD| = O(1/r2). Let τ denote the positively oriented
tangent to the curve Γ and µν(y) and µτ (y) denote µ(y) · ν(y) and µ(y) · τ (y),
respectively. Substituting Dµ into (1), we obtain

∇pD(x) = (∆+ k2)Dµ(x)

=

∫
Γ

(
−k2∇GL(x,y) + 2∇⊥∂ντGL(x,y)

)
µν(y) dS(y)

+

∫
Γ

∇⊥(∂ττ − ∂νν)GLµτ (y) dS(y) .

The other terms are higher-order derivatives of GL, so it is sufficient to show that
the term

|∇p1(x)| :=
∣∣∣∣−k2∇ ∫

Γ

GL(x,y)µν(y) dS(y)

∣∣∣∣
is O(1/r2). In the following, let z = x1+ix2 be the point corresponding to x in the
complex plane and let R be the radius of some disc containing Γ . If |x| > 2R, we
can use the standard multipole expansion of log(z−(y1+iy2)) and the assumption
that

∫
Γ
µ · ν = 0 to obtain

|∇p1(x)| = k2

2π

∣∣∣∣∂z ∫
Γ

log(z − (y1 + iy2))µν(y)dS(y)

∣∣∣∣
=
k2

2π

∣∣∣∣∣∂z
(

log(z)

∫
Γ

µν(y) dS(y) +
∞∑
l=1

1

zl

∫
Γ

(y1 + iy2)l µν(y) dS(y)

)∣∣∣∣∣
=
k2

2π

∣∣∣∣∣
∞∑
l=1

−l
zl+1

∫
Γ

(y1 + iy2)l µν(y) dS(y)

∣∣∣∣∣
= O(1/r2) .

ut

3.3 Boundary value problems — exterior

Let E and Γ be as in the previous subsection. The radiation condition allows
for a well-posed formulation of the exterior boundary value problems, which we
summarize in definitions 5 to 7 below.

Definition 5 (Exterior Dirichlet problem) Let f ∈ C(Γ ) be given. Find
(u, p) ∈ A(E) such that

∆u+ k2u = ∇p x ∈ E ,
∇ · u = 0 x ∈ E ,

u = f x ∈ Γ ,
(30)

and (u, p) satisfies the radiation condition in definition 4.
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Definition 6 (Exterior Neumann problem) Let g ∈ C(Γ ) be given. Find
(u, p) ∈ A(E) such that

∆u+ k2u = ∇p x ∈ E ,
∇ · u = 0 x ∈ E ,

t = g x ∈ Γ ,
(31)

and (u, p) satisfies the radiation condition in definition 4.

Definition 7 (Exterior impedance problem) Let h ∈ C(Γ ) be given and
suppose that η ∈ C with Re(η) > 0 and Im(η) ≥ 0. Find (u, p) ∈ A(E) such that

∆u+ k2u = ∇p x ∈ E ,
∇ · u = 0 x ∈ E ,

t+ iηu = h x ∈ Γ ,
(32)

and (u, p) satisfies the radiation condition in definition 4.

3.4 Uniqueness results

Before moving on to the exterior uniqueness theorems, we establish the well-known
result that the k corresponding to interior eigenvalues, k2, are real-valued.

Theorem 3 Let Ω be a bounded domain and suppose that Im(k) 6= 0. Then both
the interior Dirichlet and Neumann boundary value problems have at most one
solution each.

Proof A couple applications of the divergence theorem establish that∫
Ω

|2e(u)|2 − k2|u|2 dV =

∫
Γ

u · t dS . (33)

Suppose that either u = 0 or t = 0 on Γ . Then, the right hand side of (33) is zero.
Taking the real and imaginary parts of (33), it is clear that u ≡ 0, if Im(k) 6= 0. ut

In the following lemma, we prove uniqueness for the interior impedance prob-
lem.

Theorem 4 Let Ω be a bounded domain and suppose that Re(k), Im(k) > 0. Then
the interior impedance problem has at most one solution.

Proof Plugging t = iηu in (33) and taking the imaginary part, we get

2Re(k)Im(k)

∫
Ω

|u|2 dV + 2Re(η)

∫
Γ

|u|2 dS = 0 , (34)

from which it is is clear that u ≡ 0, since Re(η),Re(k), Im(k) > 0. ut

We now turn our attention to the uniqueness of the exterior boundary value
problems for the oscillatory Stokes equation. The following lemmas are useful for
proving these results.
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Lemma 6 Let the unbounded region E be given as the exterior of a finite collection
of bounded domains. Suppose that (u, p) satisfies the oscillatory Stokes equation
in E as well as the radiation condition (29). Then

lim
r→∞

∫
|y|=r

(
|t|2 + |k|2|u|2

)
dS + 2Im(k)

∫
E∩Br(0)

(
|k|2|u|2 + |2e(u)|2

)
dV

+ 2Im

(
k

∫
Γ

u · tdS
)

= 0 (35)

Proof Since (u, p) satisfies the radiation condition, we have that

lim
r→∞

∫
|y|=r

|t− iku|2dS = lim
r→∞

∫
|y|=r

(
|t|2 + |k|2|u|2 + 2Im

(
ku · t

)
dS
)

= 0 .

(36)
Since u satisfies the oscillatory Stokes equation E ∩ Br(0), using a couple of ap-
plications of the divergence theorem, we have that∫

E∩Br(0)

|2e(u)|2dV = −
∫
Γ

u · tdS +

∫
|y|=r

u · tdS + k
2
∫
E∩Br(0)

|u|2dV . (37)

Combining (36) and (37), we get

lim
r→∞

∫
|y|=r

(
|t|2 + |k|2|u|2

)
dS + 2Im(k)

∫
E∩Br(0)

(
|2e(u)|2 + |k|2|u|2

)
dV

+ 2Im

(
k

∫
Γ

u · tdS
)

= 0 .

ut

In the next lemma, we prove the analogue of Rellich’s lemma for the oscillatory
Stokes equation.

Lemma 7 Let the unbounded region E be given as the exterior of a finite collection
of bounded domains. Suppose k is real, u satisfies the oscillatory Stokes equation
in E, and that

lim
r→∞

∫
|y|=r

|u|2dS = 0 . (38)

Then each component of u is harmonic in E.

Proof We first note that each component of u = (u1, u2) satisfies the oscillatory
biharmonic equation in E, i.e.

∆(∆+ k2)uj = 0 j = 1, 2 .

For r sufficiently large, we can express uj in the Fourier basis as

uj(r, θ) =

∞∑
n=−∞

aj,n(r)einθ j = 1, 2 .

Using Parseval’s identity then∫
|y|=r

|u|2dS = r
∞∑

n=−∞
|a1,n(r)|2 + |a2,n(r)|2 .
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Since u satisfies (38), we conclude that

lim
r→∞

r|aj,n(r)|2 = 0 j = 1, 2 , (39)

Since uj , j = 1, 2 satisfies the oscillatory biharmonic equation, the functions aj,n
are linear combinations of

r|n|, r−|n|, H(1)
n (kr), H(2)

n (kr) , n 6= 0 ,

and
1, log (r), H

(1)
0 (kr), H

(2)
0 (kr) n = 0 ,

where H
(1),(2)
n (·) are the Hankel functions of the first and second kind of order

n. Since aj,n(r) satisfy (39), and using the asymptotic expansion of H
(1),(2)
n (kr)

when k and r are real-valued, we note that the projection of aj,n on r|n|, and
H1,2
n (kr) must be zero. Thus, for sufficiently large r,

uj(r, θ) =
∞∑

n=−∞

aj,ne
inθ

r|n|
,

i.e. uj is harmonic in Br(0)c. Finally, by corollary 1, u is analytic in E. Therefore,
each uj is harmonic throughout E. ut

Remark 3 Note that if u satisfies the assumptions of lemma 7, then each compo-
nent is harmonic and thus u satisfies

k2u = ∇p . (40)

Remark 4 It should be noted that in lemma 7, u need not be a radiating solution.
All that is assumed of u is that it satisfies the oscillatory Stokes equations in E.

We now have the results needed to establish the uniqueness of exterior bound-
ary value problems.

Theorem 5 (Uniqueness of the Exterior Dirichlet Problem) Let the un-
bounded region E be given as the exterior of a finite collection of bounded domains.
Suppose that Im(k) ≥ 0 and that (u, p) is a radiating solution to the oscillatory
Stokes equation in E with u = 0 on the boundary Γ , then u ≡ 0 in E.

Proof Since u = 0 on Γ , it follows from lemma 6 that

lim
r→∞

∫
|y|=r

(
|t|2 + |k|2|u|2

)
dS + 2Im(k)

∫
E∩Br(0)

(
|k|2|u|2 + |e(u)|2

)
dV = 0

Suppose that Im(k) > 0. Then, it is immediate that u ≡ 0 in E.
Suppose that k is real valued. It is clear that

lim
r→∞

∫
|y|=r

|u|2dS = 0 .

Thus, the conditions on u and k in lemma 7 are satisfied, and each component of
u is a harmonic function with u → 0 as r → ∞. Furthermore, since u = 0 on Γ ,
by the uniqueness of solutions to the Dirichlet problem for Laplace’s equation on
exterior domains, we conclude that u ≡ 0 in E. ut
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Theorem 6 (Uniqueness of the Exterior Neumann Problem) Suppose that
Ω is the union of a finite collection of simply connected domains, i.e. Ω =

⋃m
i=1Ωi

for some m ∈ N, with C2 boundaries, and let E = R2 \ Ω̄ denote its exterior;
see fig. 1 for an example with m = 4. Let Γi denote the boundary of Ωi, and
Γ =

⋃m
i=1 Γi denote the boundary of Ω. Suppose that Im(k) ≥ 0 and that (u, p)

is a radiating solution to the oscillatory Stokes equation in E with t = 0 on the
boundary Γ , then u ≡ 0 in E.

Proof Since t = 0 on Γ , it follows from (35) that

lim
r→∞

∫
|y|=r

(
|t|2 + |k|2|u|2

)
dS + 2Im(k)

∫
E∩Br(0)

(
|k|2|u|2 + |e(u)|2

)
dV = 0 .

Suppose that Im(k) > 0. It is then immediate that u ≡ 0 in E.
Suppose that k is real. It is clear that

lim
r→∞

∫
|y|=r

|u|2dS = 0 .

Thus, the conditions on u and k in lemma 7 are satisfied, and each compo-
nent of u is a harmonic function with u → 0 as r → ∞. Furthermore, as ob-
served in remark 3, k2u = ∇p. Then, the boundary condition becomes 0 = t =
−pν + 2∇∂νp/k2. Because 0 = τ · t = 2∂τνp/k

2, ∂νp = ci on Γi for each Γi,
where ci is a constant. Observe that |u| and |e(u)| must be O(1/r) as r → ∞.
Thus, for a radiating pair (u, p) with p harmonic, we have that |p| = O(1/r)
and |∇p| = O(1/r2) as r → ∞. Since the boundary is C2 and the boundary
data for p is analytic, we conclude that p is C2 in E. Furthermore, t = 0 implies
pν = 2∇∂νp/k2, and taking the dot product with ν, we get p = 2∂ννp/k

2. It then
follows that p = −2∂ττp/k

2 on Γ since p is harmonic in E and C2 in E. Since p
satisfies the radiation condition at ∞, we have∫

E

|∇p|2dV =
m∑
i=1

∫
Γi

p∂νp dS

=
m∑
i=1

ci

∫
Γi

p dS (Since ∂νp = ci on Γi)

= −
m∑
i=1

2ci
k2

∫
Γi

∂ττp dS (Since p = −∂ττp/k2 on Γ )

= 0

(41)

Thus, p is a constant in E. Furthermore, since p→ 0 at∞, we conclude that p ≡ 0
in E. Finally, since k2u = ∇p, we conclude that u ≡ 0 in E. ut

Theorem 7 (Uniqueness of the Exterior Impedance Problem) Let the
unbounded region E be given as the exterior of a finite collection of bounded do-
mains. Suppose that the complex numbers η and k satisfy that Re(η),Re(k) > 0
and Im(η), Im(k) ≥ 0. Suppose further that (u, p) is a radiating solution of the os-
cillatory Stokes equation in E which satisfies the homogeneous impedance boundary
condition

t+ iηu = 0 x ∈ Γ .
Then u ≡ 0 for x ∈ E.
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Ω1

Ω2

Ω3

Ω4

Ω1

Ω

Γ0

Fig. 2: Example of a multiply connected domain with four obstacles.

Proof Since u satisfies the radiation condition at∞ and t = −iηu on Γ , it follows
from (35) that

0 =

∫
|y|=r

(
|t|2 + |k|2|u|2

)
dS + 2Im(k)

∫
E∩Br(0)

(
|k|2|u|2 + |2e(u)|2

)
dV

+ 2Im

(
k

∫
Γ

u · tdS
)

=

∫
|y|=r

(
|t|2 + |k|2|u|2

)
dS + 2Im(k)

∫
E∩Br(0)

(
|k|2|u|2 + |2e(u)|2

)
dV

+ 2

(
(Re(k)Re(η) + Im(k)Im(η))

∫
Γ

|u|2dS
)
.

Because all of the quantities in the last expression above are nonnegative, we have
that ∫

Γ

|u|2 = 0 =⇒ u = 0 x ∈ Γ .

The result then follows from the uniqueness of solutions to the exterior Dirichlet
problem. ut

3.5 The integral equations and their null-spaces

In this section, we establish the correspondence between Stokes eigenvalues and
the invertibility of certain integral equations arising from layer potential represen-
tations of solutions to the oscillatory Stokes equation.

Let Ω be a bounded domain given as the intersection of a simply connected
domain Ω0 and the exteriors of a finite collection of bounded, simply connected
domains {Ωi}mi=1 whose closures are contained in Ω0; see fig. 2 for an example
with four inclusions. Note that the exterior of Ω, which we denote by E, is the
disjoint union of the exterior of Ω0, which we denote E0, with the sets {Ωi}mi=1.
Let Γ denote the boundary of Ω with the normal ν pointing out of Ω. We will
use superscript + and − signs to indicate the limit values of a function on Γ as
approached from the exterior and interior, respectively.
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For the sake of brevity, we consider only the Dirichlet eigenvalue problem
but a similar analysis could be applied to the Neumann eigenvalue problem. We
analyze two different representations for the Dirichlet problem: a double layer
potential, i.e. setting u = Dkµ, and a combined-field layer potential, i.e. setting
u = (iηSk + Dk)µ. While both representations result in a second-kind integral
equation for the oscillatory Stokes Dirichlet problem, the double layer potential
has spurious non-trivial nullspaces on domains with positive genus, as explained
below.

Remark 5 The application of the Fredholm alternative here again follows the struc-
ture used for the Laplace eigenvalue problem in [20, Ch. 3].

3.5.1 Dirichlet eigenvalues — double layer representation

Suppose that the solution to the oscillatory Stokes Dirichlet problem, (25), is
represented using a double layer potential defined on Γ , i.e. setting u = Dkµ
where µ is an unknown density. Substituting this expression into the boundary
condition and applying lemma 1, we obtain

(I − 2Dk)µ = −2f . (42)

The rank deficiency of I − 2Dk is well-known [10] and we summarize it in the
lemma below.

Lemma 8 In the notation above, ν ∈ N (I − 2Dᵀ
k).

Proof From lemma 3, we note thatW [(I−2Dk)µ] = 0 implies that 〈(I − 2Dk)µ,ν〉 =
0 for all µ, i.e. ν ∈ R(I − 2Dk)⊥, where R(A) denotes the range of the operator
A. By the Fredholm alternative, the result then follows. ut

Thus, we instead analyze the equation

(I − 2Dk − 2W)µ = −2f . (43)

Note that if f satisfies the compatibility condition
∫
Γ
f · ν dS = 0, then (43)

implies (42).
On simply connected domains, there is a one-to-one correspondence between

the eigenvalues of the Dirichlet problem for the Stokes equation and the values of
k for which the operator (I − 2Dk − 2W) is not invertible. To prove this, we also
need the following lemma:

Lemma 9 If t− is the surface traction associated with an interior Dirichlet Stokes
eigenfunction u, then t− and ν are linearly independent.

Proof We first note that Sk[ν](x) = 0 for all x ∈ Ω. This follows from an applica-
tion of the divergence theorem and the fact that oscillatory Stokeslet is divergence
free in Ω. If t− is a surface traction associated with a Stokes eigenvalue, then using
Green’s theorem, it follows that Sk[t−](x) = u(x) 6= 0 for x ∈ Ω and thus t− and
ν are linearly independent. ut

Theorem 8 Suppose that Ω is a bounded, simply connected domain and that
Im(k) ≥ 0. Then, the operator (I − 2Dk − 2W) is not invertible if and only if
k2 is a Dirichlet eigenvalue for the Stokes equation on Ω.
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Proof Suppose that k2 is not a Dirichlet eigenvalue for the Stokes equation on Ω.
Suppose further that µ satisfies

(I − 2Dk − 2W)µ = 0 , (44)

i.e. µ is in the null-space of (I − 2Dk − 2W). Applying the operator W to (44)
and using lemma 3, we get

0 =W[(I − 2Dk − 2W)µ] = −2W[µ] . (45)

Thus (44) reduces to
(I − 2Dk)µ = 0 . (46)

Suppose now u = −2Dk[µ] in Ω. Then u is a solution to the oscillatory Stokes
equation in Ω, and applying lemma 1, we get that the interior limit of the velocity
u− = (I − 2Dk)µ = 0 on Γ . Since k2 is not a Dirichlet eigenvalue for the Stokes
equation on Ω, we conclude that u ≡ 0 in Ω. In particular, this implies that the
interior limit of the surface traction denoted by t− = 0 on Γ . Using lemma 1 again,
we conclude that the exterior limit of the surface traction, t+, is 0 on Γ . Note that
u is a radiating solution of the oscillatory Stokes equation in the exterior E, as
W[µ] = 0 implies

∫
Γ
µ · ν = 0. From the uniqueness of solutions to the exterior

Neumann problem, we conclude that u ≡ 0 in E as well, which in particular implies
that the exterior limit of the velocity, u+, is 0 on Γ . Using the jump conditions
in lemma 1 again, we get that 2µ = u− − u+ = 0. Thus (I − 2Dk − 2W) is
invertible if k2 is not a Dirichlet eigenvalue for the Stokes equation on Ω.

To prove the converse, note that from theorem 2 we have

Sk[t](x)−Dk[u](x) =

{
u(x) x ∈ Ω ,

0 x ∈ E .
(47)

Suppose that k2 is a Dirichlet eigenvalue for the Stokes equation on Ω and let u
denote the corresponding eigenfunction with t− the corresponding surface traction
on the boundary Γ . Since u is a Dirichlet eigenfunction, the velocity restricted to
the boundary, u−, is 0. Using the Green’s theorem representation for the pair
(u, t−) and evaluating the surface traction using lemma 1, we get

t− =

(
Dᵀ
k +

1

2
I
)
t− =⇒ (I − 2Dᵀ

k) t− = 0 . (48)

From the above and lemmas 8 and 9, we know that t−,ν ∈ N (I − 2Dᵀ
k) are two

linearly independent vectors in the null space. Let c =
〈
t−,ν

〉
. Then, it follows

that
〈
t− − cν,ν

〉
= 0 and thus W[t− − cν] = 0. Since t− and ν are linearly

independent, we note that t− − cν 6= 0. Combining these results, we get that
(I − 2Dᵀ

k − 2W)(t− − cν) = 0. Since t− − cν is non-trivial, and W is self-adjoint,
it follows from the Fredholm alternative that the operator I − 2Dk − 2W is also
not invertible. ut

The correspondence result above does not hold on multiply connected domains.
In particular, while the operator I − 2Dk − 2W is indeed not invertible when k2

is a Dirichlet eigenvalue, it turns out that the operator is also not invertible when
k2 is a Neumann eigenvalue corresponding to the interior of one of the obstacle
regions, i.e. one of the Ωi with i > 0. The following theorem proves this result for
a region with one obstacle; the extension to the general case is straightforward.
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Theorem 9 Suppose that Ω is a multiply connected domain given by the inter-
section of a domain Ω0 and the exterior of a single domain Ω1 with Ω̄1 ⊂ Ω0.
Then, the operator I − 2Dk − 2W is not invertible if k2 is a Neumann eigenvalue
of Ω1.

Proof Suppose that k2 is a Neumann eigenvalue of Ω1, and let ũ denote the
corresponding eigenfunction. Note that ũ is not identically 0 on the boundary of
Ω1, which we denote by Γ1. Since ũ is an interior Neumann eigenfunction, we note
that the surface traction corresponding to the solution, t−, is 0 on the boundary.
Applying theorem 2 to the solution ũ in the interior and taking the interior limit
we get

ũ =
1

2
ũ+DΓ1

k [ũ] + SΓ1 [t−] =⇒ 1

2
ũ−DΓ1

k [ũ] = 0 . (49)

Note that the sign of the D operator in the representation theorem is switched
since the normal is pointing inwards for the boundary Ω1. Thus, ũ is a non-trivial
null vector of the operator 1

2I − D
Γ1

k . Furthermore since ũ is the boundary data

of the solution of the oscillatory Stokes equation in Ω1, we get that WΓ1 [ũ] = 0.
Setting µ = ũ on Γ1, and µ = 0 on Γ0, we obtain a non-trivial null vector for the
operator I − 2DΓk − 2WΓ on the boundary Γ = Γ0 ∪ Γ1. ut

The spurious eigenvalues of the operator I − 2Dk − 2W are demonstrated in
section 4.2.2 on an annulus, where both the true and spurious eigenvalues can be
determined analytically. Analogous with the observation in [68], this lack of one-to-
one correspondence between the invertibility of the integral operator I−2Dk−2W
and the Dirichlet eigenvalues of the Stokes operator on multiply connected domains
also causes non-robustness and introduces near-resonances for simply-connected
domains which are almost multiply-connected.

3.5.2 Dirichlet eigenvalues — combined-field representation

The non-robustness in using the double layer potential representation can be reme-
died by using a combined-field, or mixed layer potential, representation, i.e. setting
u = (Dk+ iηSk)µ, with η real and positive. Imposing the Dirichlet boundary con-
dition and using lemma 1, we obtain

(I − 2Dk − 2iηSk)µ = −2f on Γ. (50)

As with the double layer representation, this integral equation is rank deficient for
any k. Instead, we consider

(I − 2Dk − 2iηSk − 2W)µ = −2f . (51)

We now prove that for any bounded region Ω (simply or multiply connected)
with C2 boundaries, there exists a one-to-one correspondence between the invert-
ibility of the operator I − 2Dk − 2iηSk − 2W and the Dirichlet eigenvalues.

Theorem 10 Suppose that Ω is a bounded region defined by the intersection of
a simply connected domain Ω0 and the exteriors of a finite collection bounded
simply connected domains {Ωi}mi=1 and that Im(k) ≥ 0. As above, let Γi denote
the boundary of Ωi and let Γ = ∪mi=0Γi denote the boundary of Ω. Then, the
operator I − 2Dk − 2iηSk − 2W is invertible if and only if k2 is not a Dirichlet
eigenvalue for the Stokes operator on Ω.
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Proof Suppose that k2 is not a Dirichlet eigenvalue for the Stokes equation on Ω.
Suppose further that µ satisfies

(I − 2Dk − 2iηSk − 2W)µ = 0 , (52)

i.e. µ is in the null-space of (I − 2Dk − 2iηSk − 2W). Applying the operator W
to (52) and using lemma 3, we get

0 =W[(I − 2Dk − 2iηSk − 2W)µ] = −2W[µ] . (53)

Thus (52) reduces to
(I − 2Dk − 2iηSk)µ = 0 . (54)

Suppose now u = −2Dk[µ]−2iηSk[µ] in Ω. Then u is a solution to the oscillatory
Stokes equation in Ω, and applying lemma 1, we get that the interior limit of the
velocity u− = (I −2Dk−2iηSk)µ = 0 on Γ . Since k2 is not a Dirichlet eigenvalue
for the Stokes equation on Ω, we conclude that u ≡ 0 in Ω. This in particular
implies that the interior limit of the surface traction, denoted by t−, is 0 on Γ .

Using lemma 1 we observe that t+ = 2iηµ(x) and u+ = −2µ(x) on Γ , i.e.
t+ + iηu+ = 0 and u+ satisfies the homogeneous exterior impedance problem.
We first show that µ = 0 on Γ0. To this end, note that u is a radiating solution
of the oscillatory Stokes equation in the exterior E, since W[µ] = 0 implies that∫
Γ
µ · ν = 0. From the uniqueness of the impedance problem in the exterior E0 of

Ω0, we conclude that u ≡ 0 in E0 as well, which in particular implies that u+ = 0
on Γ0. Using the jump conditions in lemma 1 again, we get that 2µ = u−−u+ = 0
on Γ0.

Remark 6 Note that there is potential for confusion here in that the exterior limit
with respect to Ω for the boundary Γj is the traditional interior limit with respect
to the obstacle region Ωj .

To show that µ = 0 on Γj , we observe that u is also a solution to the oscillatory
Stokes equation in each of the obstacles Ωj . Using the jump conditions in lemma 1,
we get that t+ = 2iηµ and u+ = −2µ. However, the normal is inward pointing
inside Ωj on the boundary Γj . If we revert back to the normal being defined as an
outward normal to Ωj , then the boundary conditions on Γj is t− iηu = 0. From
the uniqueness of solutions to the interior impedance problem, we conclude that
u ≡ 0 in Ωj , which in particular implies that 2µ = u− − u+ = 0 for x ∈ Γj ,
j = 1, 2, . . .m. Thus, I−2Dk−2iηSk−2W is invertible when k2 is not a Dirichlet
eigenvalue for the Stokes equation on Ω.

From theorem 2, we have

S[t](x)−D[u](x) =

{
u(x) x ∈ Ω ,

0 x ∈ R2 \ Ω̄ .
(55)

Suppose that k2 is Dirichlet eigenvalue for the Stokes equation on Ω and let u
denote the corresponding eigenfunction and t denote its surface traction. Note
that theorem 2 implies that Sk[t−] = 0, since u− = 0 on Γ . Applying theorem 2
to the pair t−,u− and evaluating the traction on Γ using lemma 1, we get

t− = (Dᵀ
k +

1

2
I)t− . (56)
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Combining these two identities, we get that

(I − 2Dᵀ
k − 2iηSk)t− = 0 . (57)

As in the proof of theorem 8, letting c =
〈
t−,ν

〉
, it follows that

(I − 2Dᵀ
k − 2iηSk − 2W)(t− − cν) = 0 , (58)

where t−−cν 6= 0. Since t−−cν is non-trivial and both iηSk andW are self-adjoint
with respect to the bilinear form (17), it follows from the Fredholm alternative that
the operator I − 2Dk − 2iηSk − 2W is also not invertible. ut

Remark 7 The results above hold provided that Im(k) ≥ 0. There are indeed values
of k with Im(k) < 0 such that k2 is not an eigenvalue of the Stokes operator but
the boundary integral equations above are not invertible. In practice, these values
can be returned by the root finding method described in the following sections as
potential eigenvalues. In the experiments below, such values are easy to identify,
having imaginary parts which are several orders in magnitude larger than the
imaginary parts for roots corresponding to non-spurious k.

3.6 Fredholm determinants

In this section, we show how the Fredholm determinant can be used as a computa-
tional tool for detecting the non-invertibility of I−2Dk−2W. The arguments here
follow the structure of the analogous arguments in [68] for Laplace eigenvalues.

Let J1(X) denote the space of trace class operators on X, where X is a Hilbert
space, which is a subspace of the space of compact operators on X. A compact
operator A with eigenvalues λi, i ∈ N is in J1(X) if

∑
i |λi| < ∞. If A, is a trace

class operator, then the Fredholm determinant of the operator I+A is defined by

det(I +A) =
∞∏
i=1

(1 + λi) . (59)

So far, we have discussed the Fredholm theory in the space C(Γ ) × C(Γ )
equipped with the bilinear form (17). However, it is more convenient to dis-
cuss the theory of Fredholm determinants on Hilbert spaces. We note that both
the operators Dk and Sk are also compact operators mapping Y → Y where
Y = L2(Γ )× L2(Γ ). Furthermore, it is well-known that the spectrum of compact
operators with weakly singular kernels coincide on C(Γ )× C(Γ ) and Y (see [41],
for example). So for the rest of the section, we present the discussion of the relevant
operators on Y instead of C(Γ )× C(Γ ).

The operator −2Dk − 2W is trace class:

Lemma 10 Suppose that Γ is a C2 curve. Then −2Dk − 2W ∈ J1(Y ) for all
k ∈ C \ {0}

Proof Using Bessel function asymptotics, we note that the kernel of Dk given by
T·,·,`ν`(x,y) has a leading order singularity of |x−y|2 log |x− y|2 as x→ y for all
k ∈ C\{0}. It follows from the criteria listed in [12, Sec. 2] that Dk is a trace-class
operator. Since W is a rank-one perturbation independent of k, and trace-class
operators are a vector space, we conclude that −2Dk − 2W is also a trace-class
operator. ut
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Let f(k) = det(I − 2Dk − 2W). First, note that f(k) is an analytic function
of k for k ∈ C \ {0}, since the kernel of Dk is an analytic function of k on that
domain, and the Fredholm determinant of an analytic operator is analytic on the
domain of analyticity of the operator (see [68], for example).

The zeros of the Fredholm determinant indicate when the operator is not in-
vertible. The following lemma summarizes this result.

Lemma 11 With f(k) defined as above, f(k) = 0 if and only if I − 2Dk − 2W is
not invertible.

Proof The proof is standard; see, for example, [60, p. 34]. ut

When Ω is simply connected, lemma 11 and theorem 8 together imply that
f(k) = 0 if and only if k2 is a Dirichlet eigenvalue of the Stokes equation. This
reduces the problem of finding eigenvalues to finding the roots of an analytic
function.

We now show how this fact can be used to numerically estimate the Dirichlet
eigenvalues. Suppose that DNk is a Nyström discretization of the operator −2Dk−
2W when the boundary Γ is discretized with N points. Let fN (k) = det(I+DNk ),
where det is the standard matrix determinant. Note that the discretized matrix
also depends on the choice of quadrature rule used in the Nyström discretization
of the operator.

In [68], the authors prove that for computing the Laplace eigenvalues on re-
gions with analytic boundaries, when the integral operators are discretized using
Kress quadrature — a spectrally accurate quadrature rule for such kernels, see [40]
— the determinant of the Nyström discretized operators at the true eigenvalues
converge to 0 exponentially in N . Thus, if the eigenvalues have multiplicity 1, i.e.
the derivative of the determinant is non-zero at the true-eigenvalues, then the an-
alyticity of the discretized determinant implies that the zeros of the determinant
of the Nyström discretization of the linear operator converge exponentially to the
true Dirichlet eigenvalues for Laplace’s equation.

The proof presented in [68] applies to the BIE approach for computing the
Dirichlet eigenvalues of the Stokes operator as well. The result is summarized
below.

Theorem 11 Suppose that Ω is a simply connected domain with an analytic
boundary. Let k2j , j = 1, 2, . . .M denote all the Dirichlet eigenvalues of Stokes
equation on Ω contained in the interval [a, b]. Suppose further that all the eigen-
values have multiplicity 1. Let fN (k) = det(I + DNk ), where DNk is the Nyström
discretization of −2Dk − 2W with Kress quadrature. Then there exists N0 ∈ N
such that for all N > N0, fN (k) has exactly M zeros on the interval [a, b]. Let ωj,
j = 1, 2 . . .M denote the zeros of fN . Furthermore, there exist constants a > 0
and C, such that supMj=1 |ωj − kj | < Ce−aN .

Proof The proof follows from small modifications of the proofs contained in [68].
ut

Remark 8 In practice, using Kress quadrature for large problems is problematic
owing to the global nature of the quadrature rule. First, the use of a global rule does
not allow for adaptive refinement at a complicated, local feature of the boundary.
Second, the integration weight in each entry of the matrix depends on both the
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column and the row in a non-separable way. As a result, the fast multipole method
is not directly applicable to the resulting matrix and many fast-direct methods for
computing the determinant lose efficiency (for instance, the reasoning behind the
use of a proxy surface [19] no longer holds). Over the last two decades, many high-
order quadrature methods which are compatible with the fast multipole method
and fast-direct methods have been developed. Our numerical experiments, see sec-
tion 4.2.1, suggest that the zeros of the determinants of linear systems discretized
using these quadrature methods are also high order approximations of Dirichlet
eigenvalues for the Stokes operator — the error is observed to be proportional to
the quadrature error for the eigenfunction t− associated with the eigenvalue. We
leave a proof of this to future work.

Remark 9 The same analysis does not carry through for the operator I − 2Dk −
2iηSk − 2W, since Sk is not a trace class operator. For brevity, let Ck = −2Dk −
2iηSk − 2W. The operator Ck is in J2(Y ) where J2(Y ) is the space of Hilbert-
Schmidt operators on Y (the singular values of the operator are square summable,
as opposed to being summable). Thus the Fredholm determinant of I + Ck is not
necessarily finite. However, as noted in [68], the convergence result theorem 11
should be true up to a logarithmic factor in the rate of convergence, since the
singular values of the operator Ck decay like 1

n , and the Fredholm determinant
diverges logarithmically. In section 4.2.1, we demonstrate this fact numerically on
the annulus, where the eigenvalues are analytically known.

4 Numerical Results

In this section, we demonstrate the analytical claims above with numerical exam-
ples and highlight the performance of the BIE approach with demonstrations on
domains of analytical and practical interest. The software used to generate the
figures is available online 1.

4.1 Numerical methods

First, we describe the numerical tools needed to compute Stokes eigenvalues in a
BIE framework.

4.1.1 Discretizing the BIE

In order to turn the BIEs analyzed above into discrete linear systems, we require
some standard techniques from the BIE literature.

Let the boundary be divided into Np panels. We parameterize panel j as xj(t),
with t ranging over the interval [−1, 1]. Each component of xj is taken to be a
polynomial interpolant over the standard 16th-order Legendre nodes on [−1, 1],
denoted by tn, so that the total number of discretization points is N = 16Np. See
fig. 3 for an example discretization.

1 https://doi.org/10.5281/zenodo.3569973
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Fig. 3: Sample discretization of an annulus, where the inner circle, r = 1 is dis-
cretized using 6 panels and the outer circle r = 1.7 is discretized using 10 panels.

Another important quantity below is the arc-length density of a panel, which
we denote by sj(t) := |x′j(t)|. Finally, we denote the set of panels which are
adjacent to panel j by A(j). On a closed curve, A(j) contains two integers.

The integral kernels of the single and double layer potentials have weak sin-
gularities of the form |x − y|2p log |x − y| for some p ∈ N0, which require special
quadrature rules to achieve high-order accuracy. In the examples below, we use
generalized Gaussian quadrature (GGQ) [15]. To demonstrate the idea, we con-
sider evaluating the convolution of a kernel K with a density σ at the boundary
node xj(tl). GGQ is a Nyström-type discretization — the density is approximated
by its values at the discretization nodes, which we denote by σqp := σ(xq(tp)).
The basis of a GGQ rule is a set of support nodes and weights for the contribution
to the integral from the “self” panel (panel j) and the adjacent panels (with index
in A(j)).

For the self panel, there is a special set of nodes and weights for each interpola-

tion point. Denote the nodes and weights for interpolation point l by t
(l)
n and w

(l)
n ,

respectively, with 1 ≤ l ≤ 16 and 1 ≤ n ≤ Ns. The adjacent panels are handled
by a single set of over-sampled support nodes and weights. We denote these nodes
and weights by t̃n and w̃n, respectively, for 1 ≤ n ≤ Na. For the 16th-order rule
we used (i.e. a rule which integrates Φ(s) log |t− s|+ Ψ(s) over [−1, 1] exactly for
Φ and Ψ polynomials of degree up to 15), Ns = 16 and Na = 48. The contribution
of other panels is assumed to be given to high accuracy by the standard Gauss-
Legendre weights, which we denote by wn. Adding these contributions together,
we obtain the quadrature
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∫
Γ

K(xi(tl),y)σ(y) dS(y) ≈

16∑
p=1

Ns∑
n=1

w(l)
n K(xi(tl),xi(t

(l)
n ))si(t

(l)
n )B(l)

npσip (self)

+
∑

q∈A(i)

16∑
p=1

Na∑
n=1

w̃jK(xi(tl),xq(t̃n))sq(t̃n)Cnpσqp (adjacent)

+
∑

q 6=i,q 6∈A(i)

16∑
p=1

wpK(xi(tl),xq(tp))sq(tp)σqp (far) ,

where B(l) and C are interpolation matrices from the standard Legendre nodes to
the self and adjacent panel support nodes, respectively. Observe that the quadra-
ture is linear in σqp. In practice, we pre-compute and store the self and adjacent
matrix entries for each interpolation point, which is a parallelizable O(N) calcu-
lation. The “far” interactions are computed on-the-fly.

Remark 10 We ensure that “far” interactions are handled to high precision by
requiring that no two adjacent panels differ in length by more than a factor of
2. On a domain which does not nearly self-intersect this guarantees that no “far”
interactions occur which are much closer than 1/2 of a panel away (assuming
panels are relatively flat). Because the location of the singularity is bounded away
from the panel and the smooth rule is of high order, we obtain a quadrature rule
with sufficient precision.

The overall order of accuracy of the GGQ we use is 16th-order, up to the
precision of the “far” interactions.

4.1.2 Fast determinant method

Once the discretization is set, we can form a compressed representation of the sys-
tem matrix using recursive skeletonization [29]. We use the implementation of this
procedure included in the fast linear algebra in MATLAB (FLAM) package [28]. At
low-to-medium frequencies, the scaling of the recursive skeletonization algorithm
is O(N logN) in operation count and storage and, by using a generalization of
the Sylvester determinant formula, allows for a fast determinant calculation in
O(N logN) time as a follow-up step. At higher-frequencies, the recursive skele-
tonization procedure, which is based on the assumption that off-diagonal blocks
of the matrix are of low rank, breaks down and does not offer a speed advantage.
These algorithms take a precision parameter εFLAM which determines the accuracy
to which any sub-blocks of the matrix should be compressed. In all experiments,
we set εFLAM = 10−14.

The compressed representation also allows for fast applications of the system
matrix, its transpose, the inverse of the system matrix, and the inverse transpose
to vectors. In particular, this allows us to estimate the smallest singular values by
performing randomized subspace iteration, see [24, Algorithm 4.4], on the inverse
operator. Below, we use the smallest singular value as a measure of the quality of
the eigenvalues found by approximating the roots of the determinant.
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4.1.3 Interpolation and root-finding

To estimate the eigenvalues, we fit a Chebyshev interpolant to the discretized
determinant as a function of k on intervals. This is done adaptively so that the
Chebyshev coefficients of the determinant have decayed to the point that the ratio
of the last coefficient to the largest coefficient is below some threshold. In all
experiments, we set this threshold as εcheb = 10−13. We perform this fit using the
chebfun utility in the package of the same name [21] so that we can make use of
the roots utility to approximate the roots of the determinant.

The roots utility returns the roots of the polynomial in the complex plane,
with some minimal internal processing to remove roots which are too far from the
interval of interpolation to be accurate. After obtaining the output of roots, we
apply some further post-processing. The integral operators can have non-trivial
nullspaces for some k with Im(k) < 0 which are spurious; as noted above, these
correspond to eigenvalues of exterior problems. Further, the interpolant is com-
puted on subintervals [a, b] of the total interval of interest. Thus, we would like
to limit our scope to those computed roots which are sufficiently close to the real
interval [a, b] — this removes the spurious roots of large negative imaginary part
and possible double counting of those roots found near a neighboring subinter-
val. Because we are working with Chebyshev interpolants, we measure distance
from the interval in terms of Bernstein ellipses (see [64]; this is equivalent to the
approach in [68,8]). For the parameter ρ, the Bernstein ellipse Eρ is defined by

Eρ =

{
z :

(
2Rez

ρ+ 1/ρ

)2

+

(
2Imz

ρ− 1/ρ

)2

= 1

}
.

Let T be the linear transformation that maps [a, b] to [−1, 1]. We then keep only
the roots such that T (kcheb) is contained in the Bernstein ellipse Eρ with ρ =
1 + 10

√
εcheb. While it is still possible to obtain two copies of a root if it is almost

equal to an endpoint of one of the subintervals, this was not observed in our
experiments.

We can obtain an a posteriori estimate of the error in a computed root as
follows. Let f denote an analytic function, P be the polynomial interpolant of
that function over some interval, δf = f −P be the difference, and kcheb denote a
computed root of P which is simple (i.e. assume that P ′(kcheb) 6= 0). The algorithm
used by chebfun to approximate the roots of P is backward stable [49]. Therefore
the error in the roots will be small relative to the error of the fit and we set
P (kcheb) = 0 below. Suppose that f(kcheb + δk) = 0 for some small δk. Then

0 = f(kcheb + δk)

0 = P (kcheb + δk) + δf(kcheb + δk)

δk = −δf(kcheb + δk)

P ′(kcheb)
+O(δk2).

In practice, we can obtain an approximate upper bound for |δf(kcheb + δk)| as
εcheb‖P‖∞ so that εcheb‖P‖∞/|P ′(kcheb)| provides an approximate upper bound
for the error in the root.
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It can be inferred from the above that the accuracy of root finding suffers
for (nearly) multiple roots. In [68], when two eigenvalues are sufficiently close,
the authors use a different algorithm based on minimizing the smallest singular
value of the boundary integral operator with respect to k to better capture such
eigenvalues. Such a technique is applicable here as well, but we find that the
eigenvalues obtained from the procedure above are satisfactory, as measured by
the lowest singular value of the corresponding boundary integral operator (as a
check against spurious roots with negative imaginary part, we use the boundary
integral operator corresponding to k equal to the real part of a computed root).
Further discussion on the quality of the computed eigenvalues can be found in [68].

4.2 Eigenvalues of an annulus

We test our numerical machinery and validate our analytical and numerical claims
by comparing the results to the true eigenvalues on the annulus which are known
analytically (see appendix A). In all of the examples below, we work on the annulus
r1 < r < r2 with r1 = 1 and r2 = 1.7. If the inner boundary is discretized using
N1 panels, then the outer boundary is discretized using N2 = dr2/r1N1e + 1
panels to ensure that the panels are approximately the same length on both the
boundaries. The total number of discretization points is then given byN = 16(N1+
N2). Let DNk and CNk denote the linear systems corresponding to the Nyström
discretizations of−2Dk−2W and−2Dk−2iSk−2W, respectively, using generalized
Gaussian quadrature. Let fND (k) = det(I +DNk ), and fNC (k) = det(I + CNk ).

4.2.1 Convergence study

We demonstrate that for sufficiently large N , if k0 is a Dirichlet eigenvalue of
the annulus, then fND (kD) = 0 and fNC (kC) = 0 where |kD − k0| . N−20, and
|kC − k0| . N−20. Recall that the GGQ we use is 16th order for log singularities,
so that the observed convergence rate for the roots is of higher order than the order
of the quadrature rule. This behavior is a bit surprising but may owe to the fact
that the integral kernels are actually smoother than log |x−y| (with leading order
singularity |x − y|2 log |x − y|). Alternatively, the asymptotic convergence rate
may simply not be apparent before the maximum precision is reached. In fig. 4,
we show this result for k0 = 13.48025717955055 and plot the errors |kD − k0| and
|kC − k0| as a function of N .

4.2.2 Spurious eigenvalues

As noted in section 3.5.1, if k0 is a Neumann eigenvalue corresponding to the
interior inclusion, which in our case is the disk r ≤ r1, then fND (kD) = 0 with
|kD − k0| = O(ε), even though k0 is not a Dirichlet eigenvalue of the annulus,
i.e. the integral equation −I − 2Dk − 2W has a spurious eigenvalue. In fig. 5, we
demonstrate this result and also show that fNC (k0) 6= 0, i.e., the combined field
representation is robust and invertible at all values of k which are not the Dirichlet
eigenvalues of the annulus.
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Fig. 4: Convergence studies for the Dirichlet eigenvalues computed using the inte-
gral equations I − 2Dk − 2W (left) and I − 2Dk − 2iSk − 2W (right).
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Fig. 5: The values of the discretized determinants fNC (k) (left) and fND (k) on the
interval k = [14, 15] with N = 368 (the solid lines are the real parts of the
determinant and the dashed lines are the imaginary parts of the determinant).
The vertical dotted line denotes the spurious eigenvalue k0 = 14.79595178235126
and fND (kD) = 0 with |kD−k0| = 6.8×10−12. On the other hand |fNC (k0)| = 0.42,
and thus I − 2Dk − 2iSk − 2W has no spurious eigenvalue in the neighborhood of
k = k0.

4.2.3 Speed

In this section, we demonstrate the O(N logN) scaling of evaluating fNC (k) as
long as N is large enough to resolve the interactions at the Helmholtz parameter
k. When N is smaller than that, we observe worse scaling since the assumption
that far-interactions are low-rank is no longer valid at the tolerance of FLAM. We
plot the timing results corresponding to three different values of k in fig. 6. The
times are as recorded for a laptop with 16Gb of RAM and an Intel Core i7-6600U
CPU at 2.60GHz with 4 cores.
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Fig. 6: Time taken (t) in seconds to evaluate the determinant fNC (k) as a function
of N for three different values of k.
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(b) A domain with several inclusions.

Fig. 7: Computational domains.

4.3 Eigenvalues of a barbell-shaped domain

We consider the barbell-shaped domain in fig. 7a. This domain is the union of a
square of side-length 6, a square of side-length 3, and a “bridge” connecting them
of height 1 and width 5/2. For the sake of simplicity, we round the corners of the
domain to obtain a smooth object. Applying the approach described in [22], the
corners of the domain are rounded by convolving with the Gaussian kernel

φ(x) =
1√
2πh

e−x
2/(2h2) ,

with h ≈ 0.06. This leaves the domain unperturbed to high precision outside of
a radius of 0.1 around each corner. The eigenfunctions of such a domain display
the well-known localization property [65]: many of the eigenfunctions are approx-
imately supported within one of the squares. We compute these eigenfunctions
corresponding to eigenvalues k2 with k in the range 0.5 ≤ k ≤ 6.5.

The panels are divided adaptively so that the smallest panels in the rounded
corners are smaller than 10−2, which keeps the panels relatively flat. This results
in Np = 412 after enforcing the level-restriction property described in remark 10
and enforcing that no panel is larger than one wavelength for the largest k (here
λ = 2π/6.5).
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Fig. 8: Vorticity plots of the first 119 eigenfunctions of the barbell-shaped domain.
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Fig. 9: Diagnostics for the first 119 barbell eigenvalues.

As this is a simply-connected domain, the eigenvalues are estimated by finding
the values k for which I−2Dk−2W is non-invertible. Let fN (k) = det(IN−2DNk −
2WN ). To find the roots of fN (k), we fit a chebfun representation of fN (k) on
each of the intervals [j/2, (j+1)/2] for j = 1, . . . , 12. We plot the absolute value of
the Chebyshev coefficients (normalized by the absolute value of the first coefficient)
of fN (k) on the intervals [0.5, 1.0], [3.0, 3.5], and [6.0, 6.5] in fig. 9b. As expected,
the coefficients decay exponentially to zero, with more terms required at higher
frequencies.
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Fig. 10: Vorticity plots of the eigenfunctions corresponding to the first 76 eigen-
values of a domain with several inclusions.
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Fig. 11: Diagnostics for the eigenvalues of a domain with several inclusions.

We compute the roots of these Chebyshev interpolants and apply the post-
processing described above. There are 119 real roots in the range [0, 6.5]. We plot
the smallest singular value of IN −DNk −2WN for k equal to the real part of each
of these roots in fig. 9a and plot the vorticity of the eigenfunctions in fig. 8. The
singular values suggest that the quality of the eigenvalues is good. From the plots,
we see that localization occurs until about the 100th eigenvalue.

4.4 Eigenvalues of a domain with several inclusions

We now consider the multiply-connected domain in fig. 7b. The domain is defined
by a smooth rectangular region of width 3 and height 2, with an array of randomly
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Fig. 12: Further diagnostics for the eigenvalues of a domain with several inclusions.

rotated “starfish” shapes removed. Such shapes are of interest in materials design,
see, for instance, [51]. We compute the eigenfunctions corresponding to eigenvalues
k2 with k in the range 3 ≤ k ≤ 9 (this range includes the smallest eigenvalue).

For this smooth shape, ensuring that no panel is larger than one wavelength for
the largest k (here λ = 2π/9) is sufficient to resolve the object to high precision.
After enforcing the level-restriction property described in remark 10, we end up
with Np = 224.

As this is a multiply-connected domain, the eigenvalues are estimated by find-
ing the values k for which I − 2Dk − 2iSk − 2W is non-invertible. Let fN (k) =
det(IN − 2DNk − 2iSNk − 2WN ). To find the roots of fN (k), we fit a chebfun rep-
resentation of fN (k) on each of the intervals [j/2, (j + 1)/2] for j = 6, . . . , 13 and
the intervals [j/4, (j+ 1)/4] for j = 28, . . . , 35. It should be noted that, due to the
relative sizes of the domains, this represents a lower frequency problem than that
for the barbell when measured in the number of wavelengths across the object.
Thus, the use of a finer grid in frequency results from the difficulty in resolving
the Fredholm determinant for this problem, which has a larger dynamical range
than that for the barbell. We plot the absolute value of the Chebyshev coefficients
of fN (k) on the intervals [3, 3.5], [6.5, 7], and [8.75, 9] in fig. 11b. As expected,
the coefficients decay exponentially to zero, with more terms required at higher
frequencies (note that the interval [8.75, 9] is smaller than the others).

We compute the roots of these Chebyshev interpolants and apply the post-
processing described above. There are 76 roots in the range 0 ≤ k ≤ 9. We plot
the smallest singular value of IN−DNk −2iSNk −2WN for k equal to the real part of
each of these roots in fig. 11a and plot the vorticity of the eigenfunctions in fig. 10.
In the vorticity plots, we observe a different type of localization property than that
seen in the barbell, with many of the eigenfunctions approximately supported in
a small, connected subset of the domain. This is consistent with other studies [23,
44].

The singular values suggest that the quality of the eigenvalues is good, with
a few outliers. To explain these outliers, we consider two quantities which affect
the singular value at a computed root. As described above, we can approximate
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the error in the computed root at kcheb by εcheb‖P‖∞/|P ′(kcheb)|, where P is the
interpolating polynomial. The singular value estimate itself is affected by the error
incurred in applying the inverse of the compressed BIE matrix, which can be hard
to quantify [29]. We approximate this error by O(

√
N)εFLAM and assume this is

the order of the error in the singular value estimate. We plot the maximum of
these two estimates along with the computed singular values in fig. 12a. There is
a reasonably good correlation between the maximum of the error estimates and
the observed smallest singular value for the BIE, especially for larger errors.

The worst outliers are from the left half of the interval [4.5, 5]. Because the
determinant is much larger on the right half than the left half of [4.5, 5], we can
improve the estimate for the error in the roots by subdividing the interval. We
plot the smallest singular value of the BIE for the real part of the roots obtained
by fitting a polynomial on [4.5, 4.75] in fig. 12b; the roots on the refined interval
are of significantly higher quality.

Remark 11 The above experience suggests that the ratio ‖P‖∞/|P ′(kcheb)| is a
useful diagnostic for performing automated eigenvalue estimation. Note that at a
multiple root, this ratio will be more difficult to bound.

5 Conclusion

In the preceding, we have demonstrated a BIE framework for computing the eigen-
values of the Stokes operator in the plane which is robust and scalable. To justify
the approach, we developed a uniqueness theory for the oscillatory Stokes equa-
tions in exterior domains in analogy with the discussion of the Helmholtz equation
in [20]. This led to the primary theoretical results of the paper which show that the
BIEs resulting from double layer and combined-field representations of the velocity
field are not invertible precisely when k2 is an eigenvalue on simply connected and
multiply connected domains, respectively. As in [68], the costliness of perform-
ing the nonlinear minimization associated with computing these eigenvalues was
alleviated by computing instead the approximate zeros of the discrete Fredholm
determinant.

The results of this paper can be extended in a number of ways. The theory ex-
tends directly to three dimensions, where computational efficiency and numerical
implementation will be the primary concern. In the numerical examples above, we
consider only domains with differentiable boundaries for simplicity. When using
the eigenfunctions as a trial basis for simulating the Navier–Stokes equations [9], it
is necessary to handle domains with corners because the domains of interest arise
from domain decomposition, e.g. dividing a larger domain into quadrilaterals. For-
tunately, there has been recent progress toward efficient discretization of the layer
potentials of elliptic operators on domains with corners [26,59,55,25] which makes
the solution of such problems tractable. Of course, the theoretical considerations
are different for such domains. Computing the Stokes eigenvalues of regions with
corners is the topic of ongoing research.

As noted in the introduction, buckling eigenvalues are a subset of the Stokes
operator eigenvalues. By adapting the approach of [54], a suitable layer potential
representation of the buckling problem can be derived based on the oscillatory
Stokes layer potentials. This is the subject of a follow-up paper which is in prepa-
ration.
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There are some interesting questions to answer on the use of Fredholm deter-
minants in numerical calculations. As observed in [68], the combined-field repre-
sentation causes some difficulty in that the Fredholm determinant is not defined
when the single layer, which is not trace-class, is included. Zhao and Barnett [68]
suggest looking into representations of the form I−2D−2iηS2−2W, which would
have a well-defined Fredholm determinant. The relative performance of such an
approach should be explored. Further, as discussed above, the convergence of the
determinant of integral equations discretized with panel-corrected schemes (as de-
scribed in section 4) is yet to be proved. When addressing high frequency problems,
the fast-direct solver used to evaluate determinants in this paper will no longer
have near-linear scaling [29]. The design of fast-direct solvers in this regime is the
subject of ongoing research, and to the best of our knowledge, fast determinant
computation at high frequency is an open question. Finally, it is worth exploring
alternatives to the Fredholm determinant which perform well for layer potentials
that are not trace class on the boundary or for problems at higher frequencies.
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A Dirichlet eigenvalues and eigenfunctions on the annulus

In this section, we compute some of the Dirichlet eigenvalues corresponding to a subset of
the radially symmetric eigenfunctions on the annulus. In polar coordinates (r, θ), consider the
annulus defined by R1 < r < R2. Suppose that u is of the form

u = ∇⊥ (αH0(kr) + βJ0(kr)) , (60)

and p = 0.
Clearly, this pair satisfies the oscillatory Stokes equation with parameter k, since J0(kr)

and H0(kr) satisfy the Helmholtz equation on the annulus.

Let r̂, θ̂ denote the unit vectors in polar coordinates. A simple calculation shows that

ur = u · r̂ = 0

uθ = u · θ̂ = k(αH′0(kr) + βJ ′0(kr)) .
(61)

This in particular implies that on r = R1, uθ takes on the constant value k(αH′0(kR1) +
βJ ′0(kR1)). Similarly, on r = R2, uθ takes on the constant value k(αH′0(kR2) + βJ ′0(kR2)).

Thus, if k satisfies,

H′0(kR1)J ′0(kR2)−H′0(kR2)J ′0(kR1) = 0 , (62)

and for those values of k if α, β are non-zero solutions to the system of equations[
H′0(kR1) J ′0(kR1)
H′0(kR2) J ′0(kR2)

] [
α
β

]
=

[
0
0

]
, (63)

then k is a Dirichlet eigenvalue and u defined by (60) is the corresponding eigenfunction.
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k
5.135622301840683
8.417244140399865
11.61984117214906
14.79595178235126

Table 1: Roots of (66).

B Neumann eigenvalues and eigenfunctions on the unit disk

In this section, we derive an analytical expression which can be used to compute some of the
radially symmetric Neumann eigenvalues on the unit disk for the Stokes operator.

Suppose that u is of the form
u = ∇⊥J0(kr) , (64)

and the pressure is given by p = 0, as u satisfies (∆+ k2)u = 0.
Then, the surface traction t on the circle of radius r is given by

t =

(
− k

r2
J ′0(kr) +

k2

r
J ′′0 (kr)

)[
sin (θ)
−cos (θ)

]
. (65)

Thus, the values k which satisfy

−kJ ′0(k) + k2J ′′0 (k) = 0 , (66)

are Neumann eigenvalues on the unit disk. The first 4 roots of (66) are in table 1.
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