1

16
17
18

19

20

31
32
33

34

ROBUST AND SCALABLE METHODS FOR THE DYNAMIC MODE
DECOMPOSITION*

TRAVIS ASKHAM', PENG ZHENG!, ALEKSANDR ARAVKINS, AND J. NATHAN KUTZY

Abstract. The dynamic mode decomposition (DMD) is a broadly applicable dimensionality
reduction algorithm that decomposes a matrix of time-series data into a product of a matrix of ex-
ponentials, representing Fourier-like time dynamics, and a matrix of coefficients, representing spatial
structures. This interpretable spatio-temporal decomposition is classically formulated as a nonlin-
ear least squares problem, and solved within the variable projection framework. When the data
contains outliers, or other features that are not well-represented by exponentials in time, the stan-
dard Frobenius norm misfit penalty creates significant biases in the recovered time dynamics. As
a result, practitioners are left to clean such defects from the data manually or to use a black-box
cleaning approach like robust PCA. As an alternative, we propose a robust statistical framework
for the optimization used to compute the DMD itself. We also develop variable projection algo-
rithms for these new formulations, which allow for regularizers and constraints on the decomposition
parameters. Finally, we develop a scalable version of the algorithm by combining the structure of
the variable projection framework with the stochastic variance reduction (SVRG) paradigm. The
approach is tested on a range of synthetic examples, and the methods are implemented in an open
source software package RobustDMD'.
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1. Introduction. Dimensionality reduction is a critically enabling tool in ma-
chine learning applications. Specifically, extracting the dominant low-rank features
from a high-dimensional data matrix X € R™*" allows one to efficiently perform tasks
associated with clustering, classification and prediction. As defined by [11], linear di-
mensionality reduction methods solve an optimization problem with objective fx(-)
over a manifold M to produce a linear transformation P which maps the columns
of X to a lower dimensional space. Many popular methods can be written in this
framework by an appropriate definition of fx(-) and specification of the manifold M.
For instance, the principal component analysis (PCA) may be written as

(1.1) M = argminy e | X = MM™X||p,  M=0™F

where O™** is the manifold of m x k matrices with orthonormal columns, i.e. M is
a Stiefel manifold. The map P is then given by MT. One of the primary conclusions
of the survey [11], is that — aside from the PCA itself — many of the common
methods for linear dimensionality reduction based on eigenvalue solvers are actually
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sub-optimal heuristics and the direct solution of the optimization problem (1.1) should
be preferred.

In this manuscript, we consider a particular linear dimensionality reduction tech-
nique: the dynamic mode decomposition (DMD). In the past decade, the DMD
has been applied to the analysis of fluid flow experiments and simulations, machine
learning enabled control systems, and Koopman spectral analysis, among other data-
intensive problems described by dynamical systems. The success of the algorithm
is largely due to the interpretability of the low-rank spatio-temporal modes it gen-
erates in approximating the dominant features of the data matrix X. The DMD
was originally defined to be the output of an algorithm for characterizing time-series
measurements of fluid flow data [28, 27]. It was later reformulated by [30] as a
least-squares regression problem whereby the DMD could be stably computed using
a Moore-Penrose pseudo-inverse and an eigenvalue decomposition.

An earlier though less commonly used formulation, the optimized DMD [9], can
be phrased as the optimization problem

(1.2) M = argminy | X — MM'X|r, M=®(C"),

where the map o — ® () defines a matrix with columns corresponding to exponential
time dynamics (see Section 2.1) and MT denotes the Moore-Penrose pseudo-inverse
of M. This can be thought of as a best-fit linear dynamical system approximation
of the data. In most applications, it is this exponential model of the observed data
which is the real object of interest, as it is this model which is used in forecasting and
interpolation. Thus, the original DMD algorithm [28, 27] and the reformulation [30]
end up being heuristics for finding approximate solutions of (1.2).

In agreement with the conclusions of [11], the optimized DMD, while more costly
to compute, is more robust to additive noise than established heuristic methods based
on eigensolvers, i.e. the exact DMD and its noise-corrected alternatives [12, 4]. It
is also more flexible than the exact DMD, allowing for non-equispaced snapshots.
While the optimized DMD does not fit directly into the optimization framework of
[11], which is defined for M either a Stiefel manifold or a Grassmannian manifold, it
can be computed efficiently using classical variable projection methods [16, 15, 4].

The DMD has been used in a variety of fields where the nature of the data
can lead to corrupt and noisy measurements. This includes applications ranging from
neuroscience [7] to video processing [17, 14] to fluid dynamics [28, 27, 18, 12]. Although
the Frobenius norm used in the definition of the optimized DMD (1.2) is appealing
due to its physical interpretability in many applications (energy, mass, etc.), it has
significant flaws that can severely limit its applicability. Specifically, corrupt data or
large noise fluctuations can lead to significant deformation of the DMD approximation
of the data because the Frobenius norm implicitly assigns a very low probability to
such outliers (see Section 2.3). In practice, these outliers are often removed from the
data manually or using a black-box filtering approach like robust PCA [23, 32, 8].
However, such approaches ignore the structure of the DMD approximation and may
introduce biases of their own. Further, it is desirable that DMD methods not only be
robust to “noisy” outliers but also to non-exponential structure in the data.

Contributions. Here, we develop an automated approach to robust DMD. Specif-
ically, we modify the optimized DMD definition (1.2) to incorporate ideas from the
field of robust statistics [24, 20] in order to produce a decomposition that is signif-
icantly less sensitive to outliers in the data. Because the new problem formulation
incorporates robust norms, many of the efficient strategies used in variable projection
algorithms for problems defined in the Frobenius norm are no longer available. To
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FAST AND ROBUST DMD 3

remedy this, we develop a number of algorithms based on modern variable projection
methods [3, 2] which exploit the structure of the DMD for increased performance.
In particular, we can incorporate nonsmooth features, such as regularizers and con-
straints, and scale to large problems using stochastic variance reduction techniques.
This flexible architecture allows us to impose physically relevant constraints on the
optimization that are critical for tasks such as future-state prediction. For instance,
we can impose the constraint that the real parts of the DMD eigenvalues are non-
positive, thus ensuring that solutions do not grow to infinity when forecasting.

The effect of noise on the DMD is a well-studied area. Controlling for the bias
of the exact DMD in the presence of additive noise was treated by [19] and [12]. A
Bayesian formulation of the DMD was presented by [29]. This formulation is flexible
enough to incorporate robust statistics but this was not a focus of that work. In [13],
Dicle et al. presented a robust formulation of exact DMD type, which complements
the current work.

The rest of this manuscript is organized as follows. In Section 2, we provide
some necessary preliminaries from the DMD, robust statistics, and variable projection
literature and we present our problem formulation. A detailed description of the
algorithms we use to solve the robust DMD formulation follows in Section 3. We
apply these methods to synthetic data in Section 4, demonstrating the effectiveness
of the robust formulations. Finally, we provide some concluding remarks and describe
possible future directions in Section 5.

2. Preliminaries. In this section, we outline some of the precursors of this work
and present our problem formulation.

2.1. Dynamic mode decomposition. As mentioned above, the dynamic mode
decomposition (DMD) corresponds to a best-fit linear dynamical model of the data.

Let X € C™*™ be a snapshot matrix whose rows, x;, are samples of an n dimen-
sional dynamical system at a set of m sample times t;. If we suppose that the x;
arise from linear time dynamics, i.e.

x(t) = Ax(t) ,

then

X]T- = ethx(O) .

Assuming a diagonalizable matrix A, this can be rewritten as

x] = Sexp(t;D)S™'x(0) ,

where D is a diagonal matrix made up of the eigenvalues of A and the columns of S
are eigenvectors of A. We observe that each entry in x; is then a linear combination
of the terms exp(Di1t;),...,exp(Dnnt;). In the DMD setting, we make the further
assumption that the samples, x;, project onto a relatively small number, k < n, of
the eigenvectors. The optimized DMD problem is to then discover these eigenvalues
and the coefficients of x(¢) in the exponential basis based on the samples x;.

To be precise, for a given rank k, let o € C* be a vector of complex numbers
corresponding to eigenvalues as in the above. We then define the matrix ®(a;t) by

(21) q)”(a) = €ajti .

This manuscript is for review purposes only.
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4 T. ASKHAM, P. ZHENG, A. ARAVKIN, J.N. KUTZ

When it is clear in context, we often drop the dependence of ® on a and t. Let
B € C**" be a matrix containing coefficients for each entry in x(¢) in the exponential
basis.

The so-called optimized DMD (see [9]) is defined to be the solution of the following
optimization problem:

1
(2.2) min - | X — ®(a)BJ% .
a,B 2

The problem (2.2) is a large, nonlinear least squares problem; in particular, it is
non-convex and oscillatory (for complex-valued «). The classical variable projection
framework provides an efficient method for computing a (local) solution.

2.2. Variable projection. Let

1
fopt(@,B) = S[IX — ®(a)Bf% .

The classical variable projection (VP) framework is based on the observation that for
a fixed «, it is easy to optimize fopt in B. In fact, for the least squares case, we have
a closed form expression

(2.3) B(a) := arg Irgn fopt(a, B) = ®(a)'X,

where ® ()" denotes the Moore-Penrose pseudo-inverse of ®(cx). Let

Fopt () = min fop (e, B) := £ |X — B(a)Ba) [}

The VP technique finds the minimizer of fopt(a) using an iterative method.

First and second derivatives of f with respect to a are easily computed [6]:
Vafopt(a> = 8af0pt|a,B(a)

2.4 -
4 VQafopt(a) = [aifopt - 6a,Bfopt(5’]23fop‘c)ﬂ@B,ocfopt} ‘

a,B(a) ’

These formulas allow first- and second-order methods to be directly applied to fopta
including steepest descent, BFGS, and Newton’s method. The matrix B(e) is up-
dated every time a changes. Gauss-Newton and Levenberg-Marquardt (LM) have
been classically used for exponential fitting; these methods do not use the Hessian
in (2.4), opting for simpler approximations. The method was used for exponential
fitting by [16].

While VP originally referred to least-squares projection (using the closed-form
solution B(a) in (2.3)), follow-up work considered more general loss functions, using
the term projection to refer to partial minimization [3, 2].

For practitioners, the optimized DMD may be less familiar than exact DMD [30].
We favor the optimized DMD for its performance on data with additive noise (see [4])
and its flexibility. In particular, the optimized formulation enables the contributions
of the current work. For a review of the DMD and its applications, see [30] and [22].

2.3. Robust Formulations. The optimized DMD problem (2.2) is formulated
using the least-squares error norm, which is equivalent to assuming a Gaussian model
on the errors between predicted and observed data:

X =®(a)B+e €~ N(0,0°0).

This manuscript is for review purposes only.



160
161
162
163
164
165
166
167
168
169

180
181
182
183

184
185
186
187
188
189
190

191
192

FAST AND ROBUST DMD 5

Fic. 1. Gaussian (black dash) and Huber (red solid) Densities, Negative Log Likelihoods, and
Influence Functions.

This error model, and the corresponding formulation, are vulnerable to outliers in the
data. Both DMD and optimized DMD are known to be sensitive to outliers, so in
practice data are ‘pre-cleaned’ before applying these approaches.
In many domains, formulations based on robust statics have become the method

of choice for dealing with contaminated data. Two common approaches are

e to replace the LS penalty with one that penalizes deviations less harshly and

e to solve an extended problem that explicitly identifies outliers while fitting

the model.

The first approach, often called M-estimation [20, 24], is illustrated in Figure 1. Re-
placing the least squares penalty by the Huber penalty

(2) %|z|2 if |z <k
zZ) =
r klz| — iK% if || > K

corresponds to choosing the solid red penalty rather than the dotted black least
squares penalty in the center panel of Figure 1. This corresponds to modeling er-
rors € using the density exp(—p), which has heavier tails than the Gaussian (see left
panel of Figure 1). Heavier tails means deviations (i.e. larger residuals) are more
likely than under the Gaussian model, and so observations that deviate from the
norm have less influence, i.e. effect on the fitted parameters (a, B) than under the
Gaussian model (see right panel of Figure 1). The M-estimator-DMD problem can
be written as

I;liélZp(X.j —®(a)B,) =Y pj(a,B),
=1 j=1

where the sum is run across columns, denoted X.; and B.;.

Another approach, called trimmed estimation, builds on M-estimation by cou-
pling explicit outlier identification/removal with model fitting. The trimmed DMD
formulation for any penalty p is given by

h

(2.5) rgg; pji(a, B),

where pj, (o, B) < --- < p;, (o, B) are the first h order statistics of the objective values
and {j1,...,7n} C {1,...,n}. Interpreting the loss p; as the negative log likelihood
of the jth observed column, it is clear that trimming jointly fits a likelihood model
while simultaneously eliminating the influence of all low-likelihood observations. An
equivalent formulation to (2.5) replaces the order statistics with explicit weights

(2.6) min ijpj(a,B), 0<w; <1, 1™w=nh.

This manuscript is for review purposes only.
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6 T. ASKHAM, P. ZHENG, A. ARAVKIN, J.N. KUTZ

The reader should verify that (2.6) and (2.5) are equivalent.

Trimmed M-estimators were initially introduced by [26] in the context of least-
squares regression. The author’s original motivation was to develop linear regression
estimators that have a high breakdown point (in this case 50%) and good statistical
efficiency (in this case n~1/2)2. For a number of years, the difficulty of efficiently
optimizing trimmed problems limited their application. However, recent work has
made it possible to efficiently apply trimming to general models [33, 1]. We show how
to incorporate trimming into the robust DMD framework below.

2.4. Regularization. Optimized DMD allows prior knowledge to be incorpo-
rated into the optimization formulation, either through constraints on variables, or
regularization terms.

For example, in exponential fitting problems like the DMD, the real parts of
the a parameters affect the ability of the discovered model to forecast because they
determine the exponential growth rate of ®(«). A natural regularization is to place
an upper bound on the real parts of a, i.e. to impose the constraint real(a) < with
~ chosen by the user.

We write the constraint as follows:

& L

This is a simple convex function but it is not smooth. Fortunately, there are simple
iterative algorithms based on proximal operators which can handle such penalties.

DEFINITION 2.1 (Proximal Operator). A prozimal operator can be associated to
any proper, lower semi-continuous, convez function defined on a Hilbert space V. Let
@ be such a function. Then,

. 1
pro, (v) = angiy (900 + 3 VIR )

While the evaluation of the proximal operator entails an optimization problem,
there are many common and important penalties for which there is an explicit, easy-
to-evaluate formula. The penalty r above admits a trivial proximal operator (see
[10]): entry-wise projection of each component of a onto the shifted left half-plane
in C. Because this operation is simple to compute, we call r(a) a “prox-friendly”
regularizer. The VP framework proposed in this manuscript can incorporate both
prox-friendly and smooth regularizers on the o« parameters; see subsection 3.3 for
details.

Constraints and penalties can also be imposed on the matrix B. We assume that
only smooth, separable regularization penalties can be used; and in this case, the
regularization is added to the function g.

2.5. Problem formulation. Let ¢(B) and r(a) be convex regularization terms.
We formulate the general robust DMD problem as follows:

(2.8) min f(a,B,w) :=g(a,B,w) +r(a) + s(w),

o,Bw

2Breakdown refers to the percentage of outlying points which can be added to a dataset before

the resulting M-estimator can change in an unbounded way.

This manuscript is for review purposes only.
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FAST AND ROBUST DMD 7

where r(a) encodes optional regularization functions (or constraints) for a (see Sec-
tion 2.4) and

(2.9) g, B,w) =Y wip(X,; — ®(a)B,;) + ¢(B.)
j=1

with p any differentiable penalty, ¢(B.;) any regularizer for columns of B, and s(w)
encoding the capped simplex constraints:

(2.10) s(w) =

0 if0<w; <1, 1Tw=nh
oo else.

These constraints are explained in Section 2.3. The w variables select the best-fit
h columns of the data, and only use those values to update o. Since each w; €
[0, 1] rather than {0,1}, the solutions do not have to be integral. However, for any
fixed (B, ) there exists a vertex solution, since the subproblem in w with the other
variables fixed is a linear program. The function s(w) admits a simple proximal
operator, which is the projection onto the intersection of the h-simplex with the unit
cube®. Setting h = n forces w; = 1 for each column, eliminating trimming completely,
and reducing (2.8) to a simpler regularized M-estimation form of DMD.

Our numerical examples use constraints for a, but do not regularize B, that is,
¢(B.;) = 0. However, we consider separable penalties ¢ in the algorithmic description
to preserve the generality of (2.8).

Remark 2.2. Observe that (2.8) captures the standard optimized DMD, where
p()=1"I%,¢B;)=0,r(a) =0 and h =n.

3. Methods. In this section, we develop numerical approaches for (2.8). While
(2.8) is in principle a non-linear and non-convex problem in nk + k + n variables, the
variable projection framework decouples this into relatively simple convex optimiza-
tions over nk of these variables, the ‘inner’ problem, and a non-linear, non-convex
value function optimization problem in the remaining n + k variables, the ‘outer’
problem. We detail this in subsection 3.1, including sufficient conditions on the reg-
ularizers and penalties in the robust formulation. In subsection 3.2, we provide some
explicit formulas for the gradients of the relevant objective functions. Suitable algo-
rithms for both smooth and non-smooth regularizers are presented in subsection 3.3.
For large n and m, the simple, convex optimizations which arise can become a com-
putational bottleneck. In subsection 3.4, we develop a stochastic variance reduction
(SVRG) algorithm that accelerates each iteration for the ‘outer’ problem by exploit-
ing the structure of the ‘inner’ problem, enabling scalability of the approach to large
problems. Specifically, only a subset of the ‘inner’ problems need to be evaluated at
each iteration to get noisy gradients of the outer problem. Numerical studies illus-
trating the utility of both robust DMD formulations, and of the SVRG acceleration,
are presented later on in Section 4.

3.1. Variable projection. To compute the robust optimized DMD, we apply
the variable projection (VP) technique to the optimization problem (2.8). Define the
reduced function f and implicit solution B(a) by

fa,w) = min f(a, B, w)
(3.1) B
B(a,w) = arg ming f (a0, B, w) ,

3This set is called the capped simplex, and admits fast projections [1].

This manuscript is for review purposes only.
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where f is as defined in (2.8).

We refer to partially minimizing f over B € CK*™ as the inner problem and min-
imizing f over a € C¥ and w € R” as the outer problem. We leave the trimming
parameters w as part of the outer problem to leave the inner problem as both smooth
and convex, making it easier to develop provably convergent variable projection al-
gorithms and their stochastic extensions. The general VP strategy is to apply an
iterative method to the outer problem, computing a (local) minimizer of the reduced
function f . In each such iteration, we must solve the inner problem over B. When f
is convex and smooth with respect to B, fast optimization algorithms can be applied
to the inner problem. Moreover, the inner problem is embarrassingly parallelizable,
as will be clear in the next subsection.

For the outer problem, we require gradient information for f with respect to a and
w. The gradient formula (2.4) holds for a very broad problem class. For example,
as long as f is strongly convex with respect to B, the result holds for any convex
regularizer on B [31]. If the regularizer is finite-valued, the strong convexity of f
with respect to B is not necessary, and we have an alternative set of conditions [25,
Theorem 10.58]:

1. g(a,B,w) is level-bounded in B locally uniformly in «; i.e., for any compact
subset of a, the union of sublevel sets {B : g(a, B,w) < v} is bounded.
2. The gradient of g(a, B, w) exists and is continuous for all (e, B, w).
3. B(a, w) is unique.
Several assumptions on g, ®, and ¢ (see (2.9)) can be made to ensure these conditions
hold. E.g.:
e If g is differentiable, convex, and has compact level sets with respect to B,
and ®(a) has full rank, then the result holds.
e For any convex g, strong convexity of ¢ also ensures the result without any
assumptions on ® ().

The gradient formula (2.4) is valid for all of the examples in the paper and takes

the form:

(32) Vf(cuw) = 8a,wf(a7 B7 W)'a,B(a,w),w .

See subsection 3.2 for more explicit gradient formulas.

Solving (2.8) requires optimization procedures for both the inner and outer prob-
lems. We outline some deterministic algorithms in the subsection 3.3 and then present
a a stochastic variance reduction algorithm in subsection 3.4.

3.2. Gradient formulas. In order to apply the algorithms proposed in this
manuscript, we need to compute the gradient of the penalty function (2.9) with respect
to o, B, and w.

In all of the optimization methods, we treat the real and imaginary components
of a;j and Bj; as independent, real-valued parameters. However, for the sake of
compactness, we write derivative formulas in the Wirtinger sense, computing partial
derivatives with respect to the complex variables. Consider a complex number z =
2 + iy. The derivatives for the real components can be recovered from the formulas

o 1[0 0
3.3 o_1(9 ;9.
(3:3) 0z 2 <8x 18y)
DEFINITION 3.1 (Wirtinger derivative). Let ¥(2) be a function of z which can be
written as ¥(z) = V(z, zZ) where U is differentiable with respect to both z and z. The

This manuscript is for review purposes only.
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Wirtinger derivative of v is then the partial derivative of ¥ with respect to z, treating
316z as a constant.

w w
= =
ot

317 For example, the Huber penalty may be written as
1,2
KVZ2Z — 5K Z| > K
318 p(z) = P(z,z;6) =< |~ 2k el = .
52Z, |z| < K

319  The Wirtinger derivative of the Huber penalty is then

KZ
0 —, |zl <k

320 p(z) = 8—P(z,2; K) =X 2VzZ 1 .
o 37, |z| > K

321 Once the derivative of p is known, then the gradients of g with respect to o, w,

322 and B can then be computed using the chain rule. Gradients of the reduced function f
323 can then be obtained via (3.2). For notational convenience, we define a matrix-valued
324 penalty function

p(Arg) - p(Arn)
325 p(A) = : :
p(Am,l) e p(Am,n)
326 In this notation, we can write
327 (3.4) g(a,B,w) =1"p(X — ®(a)B)w + ¢(B) ,

328  where

329  We then have:

Vag(a,B,w) = —dlag [BDiag(w)p' (X — ®B)T(Diag(t)®)]
w0 (35) Veg(a, B,w) = —®Tp'(X — ®B)Diag(w) + Vq(B)
h ' Ve, 9(a, B, w) = —‘PT (X.; — ®B.j)w; + Vq(B)
Vwg(a,B,w) = p(X - $B)T1
331  where we define
ai ag 0 ... O
. . 0 as
332 diag(4) == | |, Diag(a) :=
: 0
Ann 0o --- 0 ayp
333 3.3. Deterministic algorithms. For the algorithms below, we assume that ¢

334 in (2.8) is convex with respect to B; recall that g is continuously differentiable with
335 respect to B, a, and w. We note that the function f may not necessarily be smooth,
336 depending on the regularizer r(cx).

This manuscript is for review purposes only.
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Observe that the inner problem decouples into n independent subproblems of
dimension m:

(3.6) B.j(a,w) = argminy, w;p(X,; — ®(a)b)+¢(b), j=1,...,n

We use BFGS to solve each of these subproblems, since the dimension of each problem
is relatively small and BFGS gives a superlinear convergence rate while using only
gradient information. Further, the values of the vectors b; are independent of each
other so that these solves can be performed in parallel.

The selection of the outer solver depends on the regularizers. When r in (2.8)
is continuously differentiable, we can also use BFGS as our outer solver, resulting
in Algorithm 3.1. When 7 is non-smooth but admits an efficient prox operator, a
first order method such as the proximal gradient method or its accelerations, such
as FISTA [5], can be used instead; see Algorithm 3.2 for a simple prox-gradient
implementation. Proximal gradient requires a rule for selecting a step size, 17o. We
use a backtracking line search in practice but other methods are available.

Algorithm 3.1 VP using BFGS for outer problem (smooth 7).

Input: a°, B, wo H) =1, v=0.
1: while not converged do
2: for j=1,...,ndo

3: Bf’jH — arg mgn wip(X.; — ®(a”)b) + q(b)
4: w”t1 « weights update

5: f4 — fla¥,BYH woth)

6:  ga + Vaf(a’, B wt)

7 if v > 1 then

s: s e fr el

9: Y gh—gn

10: BY = ((s",y") 7!

11: Hy, [T —BY(s)(y" )TV H [T — 8 (y")(s")T] + B(s”)(s")T
12: a’*! + LineSearch(a” — 1o H%g%,)

13: verv+1

Output: o”, B”.

Algorithm 3.2 VP using proximal gradient for outer problem (prox-friendly ).

Input: o, B?, w%, v =0.
1: while not converged do
2: for j=1,...,ndo

3: Bf’jH + arg mgn wip(X.; — ®(a”)b) + q(b)
4: w”t1 « weights update
5: a’tt « prox, (& = naVaf(a”,BrH wril))

6: verv+1
Output: o”, B”.

There are different ways to update the weights w, see line 4 in Algorithms 3.1
and 3.2. We let v denote the iteration counter. Define

P =p(X;— @(a”)b?“) .
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The objective with respect to w is given by

n
i oY
min Z w;pi + s(w),
j=1
where s encodes the weight constraints (2.10). The simplest update rule is to set
w; = 1if pj is one of the h smallest, and 0 otherwise [33]; this corresponds to partial
minimization in w at every step. A less aggressive strategy is to use proximal updates
on w,

w” T = prox

Nw S (WV - nwvwf(auv BU+17 Wu))
where any step size 1y > 0 can be used [1]. We use the former simple rule as the
default in the algorithm. When h = n, trimming is turned off, and all weights are

identically equal to 1.

Algorithm 3.3 SVRG for DMD

Input: o, B?, w°
1: Initialize v = 0, (; = Vf; (a®,w°) for j =1,2,...,n, and { = %23;1 ¢
2: while not converged do
3: Uniformly sample I¥ C {1,2,...,n}, such that |[[”| =T

4: Sample J¥ € {0,1}, such that P(J =1) < P(J =0).
5: for j €I, do

6: Bf’jJrl — arg mgn wip(X.; — ®(a”)b) +q(b)

7: ¢+ Vg (a”,w)

8: if J =1 then

9: w"tl « weights update

10: else

11: w/tl  w?

12: a’tlh prox,_, (a” — Na {% djer ((:J+ -¢)+ C})
13: Na < step size update

G forjel”
15 G m G

16: vi<v+1
Output: a”, B

3.4. A scalable stochastic algorithm. In DMD applications, n represents the
number of spatial variables, and is often much larger than the dimension of the outer
problem, k. In step 2 of Algorithms 3.1 and 3.2, we must solve n subproblems of
dimension & for which gradient evaluations have O(mk) cost (see (3.5)). For large n
and m, this is a computational bottleneck.

We use stochastic methods to scale the approach. The basic idea is to partially
minimize over a random sample of 7 columns of B, with 7 < n; the resulting (scaled)
gradient is an unbiased estimate of V, f. More precisely, define

B.(a,w) = argminyw;p (X.; — ®(a)b) + ¢(b),
gj(o, w) = wip(X.; — ®()B.j(a, w)) +¢(B.j(ca, w)).

Then we have

fla.w) =" gila,w) +r(a) + s(w).

This manuscript is for review purposes only.
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This is a classical setting for stochastic methods. In each iteration, we can use a
subset of g; to calculate the approximate gradient for the smooth part of f in order
to reduce the computational burden. Here we use SVRG [21] as our stochastic solver
for the outer problem; the full details are given in Algorithm 3.3.

SVRG is chosen in contrast with stochastic proximal gradient (SPG). Stochastic
proximal gradient (SPG) has no convergence theory, though it is frequently used in
practice. A clear practical downside of using SPG is that it requires a diminishing
step size and its performance is sensitive to parameters that guide step size selection.
For SVRG, we may use a constant step size. Convergence of SVRG is analyzed
for the nonconvex case, with and without trimming, by [1]. The trimming weights
w require full passes through the data, and this is why the w update (lines 8-11
of Algorithm 3.3) is done rarely. A numerical study showing the impact of SVRG
compared to full gradient methods is summarized in Figure 6 of Section 4.

Remark 3.2. This stochastic approach is an alternative to using a dimensionality
reduction based on projecting onto SVD modes [4] or using an optimized but fixed
subsampling of the columns [18]. With the method of Algorithm 3.3, none of the data
is discarded or filtered by the cost reduction procedure.

4. Synthetic examples. In this section, we demonstrate the effectiveness of
robust penalties in handling outliers on a pair of synthetic test cases with known so-
lution. These examples are drawn from the additive noise study of [12] and represent
two cases in which additive noise presents a challenge: recovering purely oscillatory
dynamics and recovering a decaying mode in a system with a growing mode. In [4],
the optimized DMD was demonstrated to improve significantly over the biases of the
exact DMD for the case of additive Gaussian noise. Here, we show that the robust
DMD can also handle significant outliers. We also demonstrate the effectiveness of
the SVRG-based randomized algorithm, Algorithm 3.3, by comparing its performance
on a medium-sized problem with the performance of the proximal-gradient-based al-
gorithm, i.e. Algorithm 3.2, and the performance of SPG.

4.1. A simple periodic example. Let x(¢) be the solution of a two dimensional
linear system with the following dynamics

(4.1) % = G :f) x.

We use the initial condition x(0) = (1,0.1)T and take snapshots

x; = x(jAt) + 0g; + ps;

where At = 0.1, o and p are prescribed noise levels, g; is a vector whose entries
are drawn from a standard normal distribution, and s; is a vector whose entries are
the product of a Bernoulli trial with small expectation p and a standard normal
(corresponding to sparse noise). The snapshots are therefore corrupted with a base
level of noise o and sparse “spikes” of size p with firing rate p. A sample time series
for this example can be found in Figure 2.

The k = 2 eigenvalues of the system matrix in (4.1) are +i, corresponding to
sinusoidal dynamics in time. In Figure 3, we plot the median (over 200 random
trials) of the /[!-norm error in the approximations of these eigenvalues using three
different methods: the exact DMD of [30]; the optimized DMD as defined in (2.2);
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F1G. 2. Sample time series of z1(t) and x2(t) for the simple periodic example, with background
noise of size 0 = 102 and spikes of size u = 1 added at p = 5% of the snapshots for each channel.

Simple Periodic Example
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@ 10> 104 103 102 10!

background noise

Fic. 3. Median error in the computed eigenvalues over 200 runs. The background noise o
varies while the size of the spikes is fizred at p = 1 and the firing rate is fized at p = 5%.

and the robust DMD as defined in (2.8), with p the Huber norm and h = n = 2
(no trimming). Each trial consists of the first 128 snapshots with additive noise. We
bound the maximum exponential growth rate by setting v = 1 in the regularizer r(a)
(see (2.7)). The level of the background noise, o, varies over the experiments and the
size and firing rate of the spikes are fixed at 4 = 1 and p = 5%, respectively. We set
the Huber parameter using knowledge of the problem set-up, i.e. kK = 50, but in a real
data setting this parameter would have to be estimated or chosen adaptively. While
the optimized DMD improves over the exact DMD, the error does not decrease as
the level of the background noise decreases. We therefore see the effect of the sparse
outliers using the optimized DMD. For the robust formulation, on the other hand,
the accuracy of the eigenvalues is determined by the level of the background noise, so
that the outliers are not biasing the computed eigenvalues.

4.2. An example with hidden dynamics. In the case that a signal contains
some rapidly decaying components it can be more difficult to identify the dynamics,
particularly in the presence of sensor noise [12]. We consider a signal composed of
two sinusoidal forms which are translating, with one growing and one decaying, i.e.
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F 0.2
3 0.0

(c) (d)

Fic. 4. A surface plot of the data for the hidden dynamics example and surface plots of a
sample of each type of noise we consider.

(4.2) z(y,t) = sin(k1y — wit)e”" + sin(koy — wot)e??"

where k1 =1, w1 =1, 1 = 1, ko = 0.4, we = 3.7, and 75 = —0.2 (following settings
used by [12]). This signal has k = 4 continuous time eigenvalues given by v; + iw;
and 7, & iws. We set the domain of y to be [0,15] and use 300 equispaced points,
yj, to discretize. For the time domain, we set At = /(2% — 2) so that the number
of snapshots we use, m = 27, covers [0,7/2]. We denote the vector of discrete values
x(y;,t) by x(t). See Figure 4(a) for a surface plot of this data.

We consider three different types of perturbations of the data. The first perturba-
tion adds background noise and spikes, as in the previous example, i.e. the snapshots
are given by

Y = x(jAt) + og; + pis;

where o and p are prescribed noise levels, g; is a vector whose entries are drawn from
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a standard normal distribution, and s; is a vector whose entries are the product of a
Bernoulli trial with small expectation p and a standard normal. See Figure 4(b) for a
sample plot of this “sparse noise” pattern. The second perturbation we consider adds
background noise and spikes which are confined to specific entries of x;, i.e.

2) . _
x(? = x(jAt) + og; + ps;

where g;, o, and i are as above and the §; are sparse vectors which have the same
sparsity pattern for all j and nonzero entries drawn from a standard normal distribu-
tion (this corresponds to having a few broken sensors recording the data). We plot a
sample of this “broken sensor” noise pattern in Figure 4(c). The third perturbation
we consider adds background noise and a localized bump to the data, i.e.

3) w—ui o [te—jAE\?
[Xj Lfv(yz',]At)JrUN(O,l)JrAeXp(( wAy) < AL >>

where o is as above, N'(0,1) denotes a number drawn from the standard normal dis-
tribution, A determines the maximum height of the bump, w determines the “width”
of the bump, and y, and ¢, determine the center of the bump in space and time (this
corresponds to having some non-exponential dynamics in the data). In Figure 4(d),
we plot a sample of this “bump” noise pattern.

In Figure 5, we plot the median (over 20 random trials) of the I'-norm error in
the approximations of the eigenvalues using four different methods: the exact DMD
of [30]; the optimized DMD as defined in (2.2); the robust DMD as defined in (2.8),
with p the Huber norm and A = n = 300 (no trimming); and the robust DMD with
p the standard Frobenius norm and i = 0.8n = 240 (trimming). Each trial consists
of the first 128 snapshots with additive noise. We bound the maximum exponential
growth rate by setting v = 2 in the regularizer r(a) (see (2.7)). The level of the
background noise, o, varies over the experiments. For the “sparse noise” and “broken
sensor” snapshots, the size of the spikes is fixed at ¢ = 1 and the density is fixed
at p = 5%, i.e. 5% of the entries are corrupted for the “sparse noise” example and
5% of the sensors are corrupted for the “broken sensor” example. For the “bump”
snapshots, the height of the bump is fixed at A = 1 and the width at w = 10. We
set the Huber parameter using knowledge of the problem set-up, i.e. k¥ = 50, but in
a real data setting this parameter would have to be estimated or chosen adaptively.

With sparse noise, as in Figure 5(a), the results for the exact DMD, optimized
DMD, and Huber norm-based robust DMD are consistent with the simple periodic
example. The Huber norm formulation is the only one which is able to take advantage
of the lower levels of background noise. The trimming formulation provides very little
advantage for this example, as any sensor can be affected by the outliers. In contrast,
we see that the trimming formulation is able to out-perform the Huber formulation for
the broken sensor example (see Figure 5(b)), as the algorithm is able to adaptively
remove the broken sensors from the data. In Figure 5(c), we plot the results for
the bump data, which display some interesting behavior. Here, the optimized DMD
performs worse than it did for the other noise sources, perhaps due to an attempted
fit of the smooth bump. For all but the highest background noise level, the Huber
and trimming formulations show a significant advantage over the optimized DMD
and exact DMD, with the trimming formulation performing the best. The trimming
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Fic. 5. Median error in the computed eigenvalues over 20 runs. The background noise o

varies while the size of the spikes is fized at p = 1 and the firing rate is fized at p = 5% for the
“sparse noise” and “broken sensor” examples and the height is fired at A = 1 and the width at
w = 10 for the “bump” example.

formulation therefore presents an attractive solution for data with unknown, localized
deviations from the exponential basis of the DMD, especially given that the inner
problem for trimming with the Frobenius penalty can be solved rapidly. Of course,
trimming can be combined with a Huber (or other robust) penalty for increased
robustness to outliers.

4.3. Scalability demonstration. As noted in subsection 3.4, the inner problem
becomes a computational bottleneck for large dimensional problems (large n and m).
Algorithm 3.3 proposes an acceleration where noisy gradient values are obtained for
the outer problem by only solving a fraction of the inner subproblems at each step.

In Figure 6, we solve a synthetic problem with dimension m = 512, n = 1000,
and k = 3 using 3 different methods: proximal gradient (PG) with backtracking line
search, as in Algorithm 3.2; stochastic proximal gradient (SPG); and the proposed
SVRG algorithm. As noted above, SPG requires a diminishing step size; we choose
the attenuation schedule

7
e = floor(v/K) +1’

with 7% = 1077 and K = 100. For SVRG, we use a constant step size 7%, same as
our choice for SPG, and set the parameter 7 = 10. Comparing the algorithms by
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Algorithm Comparison

objective function

0 1x10* 2x10* 3x10* ax10*
number of solved subproblems

Fic. 6. Comparative performance of SVRG, Stochastic Prozimal Gradient (SPG) method and
Proximal Gradient (PG) method using the same data set. PG is a robust method but requires many
subproblem solves at each iteration (when using a line search). Both SPG and SVRG are much
more efficient at the start, but SPG can easily stagnate; SVRG has the best theoretical rates and
empirical performance with respect to the requisite number of subproblem solves.

the total number of inner subproblems solved (number of optimizations to compute
b;(a, w) for some j) we see that SVRG is the most efficient method and is less noisy
than SPG (Figure 6).

5. Conclusion and future directions. We have presented an optimization
framework and a suite of numerical algorithms for computing the dynamic mode de-
composition with robust penalties and parameter constraints. This framework allows
for improved performance of the DMD in a number of settings. In the presence of
sparse noise or non-exponential structure, the use of robust penalties significantly de-
creases the bias in the computed eigenvalues. When using the DMD to perform future
state prediction, adding the constraint that the eigenvalues lie in the left half-plane
increases the stability of the extrapolation. The algorithms presented are capable of
solving small to medium-sized problems in seconds on a laptop (e.g. the problem of
size m = 512, n = 1000, and k = 3 of subsection 4.3 takes a few seconds on a laptop)
and scale well to higher-dimensional problems due to their intrinsic parallelism and
the efficiency of the SVRG approach. In contrast with previous approaches, the SVRG
increases efficiency without throwing out data or incidentally filtering it. For DMD
practitioners, these features of the new framework and algorithms presented here will
enable the analysis of larger, noisier, and more complex data sets than previously pos-
sible. The software used for these calculations is available in the open-source package
RobustDMD?.

The present work can be extended in a number of ways. Because the inner solve
completely decouples over the columns of X and B, the algorithms presented above
immediately generalize to data-sets with missing entries and even data which are col-
lected asynchronously across sensors. While the global nature of an optimized DMD
fit has advantages in terms of the quality of the recovered eigenvalues, it implicitly
rules out process noise. However, including process noise or a known forcing term

4https://github.com/UW-AMO/RobustDMD.jl
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would be useful in many applications. Incorporating such terms into this optimiza-
tion framework is ongoing work and results will be reported at a later date. We also
note that much of the above applies to dimensionality reduction using any parame-
terized family of time dynamics, not just exponentials. For such an application, many
of the algorithms above could be easily adapted, so long as gradient formulas are

available.
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