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Abstract

In inverse scattering problems, a model that allows for the simulta-
neous recovery of both the domain shape and an impedance boundary
condition covers a wide range of problems with impenetrable domains, in-
cluding recovering the shape of sound-hard and sound-soft obstacles and
obstacles with thin coatings. This work develops an optimization frame-
work for recovering the shape and material parameters of a penetrable,
dissipative obstacle in the multifrequency setting, using a constrained class
of curvature-dependent impedance function models proposed by Antoine,
Barucq, and Vernhet in “High-frequency asymptotic analysis of a dissi-
pative transmission problem resulting in generalized impedance bound-
ary conditions.” Asymptotic Analysis, 26(3-4):257–283, (2001). We find
that in certain regimes this constrained model improves the robustness
of the recovery problem, compared to more general models, and provides
meaningfully better obstacle recovery than simpler models. We explore
the effectiveness of the model for varying levels of dissipation, for noise-
corrupted data, and for limited aperture data in the numerical examples.

1 Introduction

Inverse scattering problems arise in many applications, including sensing [45,
70], ocean acoustics [30, 34], medical imaging [52, 55, 59, 66], nondestructive
testing [35, 38, 53], and radar and sonar [33]. The general setting of those
problems is characterized by probing a domain with one or multiple incident
waves and obtaining measurements of the scattered waves. From this scattered
wave data, one seeks to reconstruct some property of the domain, e.g. density,
sound-speed, impedance, shape, etc.
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In this work, we consider the problem of recovering the shape and physi-
cal parameters of homogeneous, penetrable obstacles from measurements of the
scattered field in the far field region through the use of an impedance model
approximation of the standard transmission model. We consider dissipative
obstacles in which acoustic waves in the medium are damped and acoustic en-
ergy dissipates into thermal energy [18]. In the frequency domain, the dis-
sipation corresponds to a complex wavenumber for the medium of the form
k1 = ω

√
(1 + ıδ/ω)/c1, where ω is the pulsating frequency of the incident wave,

c1 is the sound speed of the medium, and δ > 0 is the dissipation constant for
the medium.

Let Ω1 denote the interior of a dissipative obstacle with boundary Γ and let
n denote the outward normal on Γ. Given the incident field, uinc, the scattered
field, uscat, is modeled by the Helmholtz equation with a transmission boundary
condition. In the notation of [4], we have

−(∆ + k22)uscat = 0 in Ω2 ,

−(∆ + k21)uscat = k22(1−N2)uinc in Ω1 ,[
uscat

]
= 0 on Γ ,[

χ∂nu
scat

]
= −

[
χ∂nu

inc
]

on Γ ,√
|x|

(
uscat − ık2

x

|x|
· ∇uscat

)
→ 0 as |x| → ∞ ,

(1)

where Ω2 = R2\Ω1; k2 = ω/c2 is the wavenumber of the incoming incident wave;
c2 is the sound speed of the background medium Ω2 and cr = c1/c2 is the relative
sound speed; N =

√
(1 + ıδ/ω)/cr is the relative refractive index; ρ1 and ρ2 are

the densities for Ω1 and Ω2, respectively, and ρr = ρ1/ρ2; α = 1/(ρr(1 + ıδ/ω))
is the complex contrast coefficient; and the function χ is equal to 1 in Ω2 and α
in Ω1. The notation [ϕ] denotes the difference between the exterior and interior
traces, or the “jump”, of the function ϕ across Γ.

The transmission problem (1) can be solved using standard boundary inte-
gral equation methods (BIEMs); see Appendix A.1 for details. Like the case of
impenetrable obstacles, say with sound-soft or sound-hard boundary conditions,
the solution of a penetrable transmission problem can then be discretized using
unknowns on the boundary of the domain alone. However, the transmission
problem generally requires the solution of a system of twice the size.

Remark 1. The difference in computational effort between the penetrable and
impenetrable cases is even more significant in the inverse obstacle setting. The
Fréchet derivative of the PDE solution with respect to the material parameters
typically involves the solution of an inhomogeneous PDE for the penetrable case;
see, e.g., [29, §A.2].

In an attempt to decrease the computational and memory costs in the so-
lution of the problem, several authors proposed to approximate the forward
transmission problem by a forward scattering problem for an impenetrable ob-
stacle with a generalized impedance boundary condition (GIBC), see [3, 5, 41,
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46, 58, 60–64, 71]. Such approximations hold in various settings, including scat-
tering from penetrable, dissipative objects and objects with thin, penetrable
coatings.

In [5], the authors observe that for large dissipation constant, i.e. δ ≫ 1,
the wave does not penetrate the medium significantly and they show that the
forward transmission problem can be approximated asymptotically by a related
problem with a GIBC. In particular, if uscat is the solution of (1), then there
exists a local operator Y such that uscat ≈ ϕ, where

−(∆ + k22)ϕ = 0 in Ω2 ,

(∂n − Y)ϕ = − (∂n − Y)uinc on Γ ,√
|x|

(
ϕ− ik2

x

|x|
· ∇ϕ

)
→ 0 as |x| → ∞ .

(2)

Figure 1: Comparison of the total field of the solution of the transmission
(u = uscat +uinc) and impedance (u = ϕ+uinc) scattering problems for ω = 30.
The top row shows the transmission solution and the bottom row shows the
solution of the first order impedance model. The dissipation decreases from left
to right. The first column sets δ = δ0 =

√
3ω. The second and third columns

have δ = δ0/16 and δ = δ0/256, respectively.

It is possible to obtain different order approximations for the operator Y.
For example, the first order operator derived in [5] is a multiplication operator
of the form

[Y1ϕ] (x) = −α(ık2N +H(x))ϕ(x) , (3)

where H(x) is the signed curvature at x ∈ Γ. Higher order GIBCs involve
differentiation operators on the curve [5, 41].
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Figure 1 compares the solution of (1) to the solution of (2) with Y = Y1
for the same incident field and varying dissipation. With dissipation in the
regime recommended by [4] (δ = δ0 =

√
3ω), the impedance model agrees

well with the transmission model. Slightly below this regime (δ = δ0/16), the
models still agree well in much of the exterior; however, the solution of the
transmission problem exhibits a wave transmitting through the narrowest part
of the plane, which is not captured by the impedance model. For even lower
values of dissipation (δ = δ0/256), the solution of the transmission problem
penetrates the obstacle and the solutions of the two models are notably different.

We will explore the suitability of a simple multiplicative GIBC of the form
[Yϕ](x) = −ık2λ(x;ω)ϕ(x) as an approximate forward model in the inverse
obstacle scattering setting with multiple frequency data. More concretely, we
consider scattering data for a fixed set of material parameters: c1, c2, ρ1, ρ2,
and δ. We assume that scattering measurements are available for Nk pulsation
frequencies, ω1 < ω2 < · · · < ωNk

. The incident fields are plane waves of
the form uinc(x) = exp(ık2d · x) and data are available for Nd(ω) angles of
incidence at each ω, with directions determined by the unit vectors d1, . . . ,dNd

.
The scattered fields are measured for each incident wave at Nr(ω) receptor
locations, r1, . . . , rNr , far from the obstacle.

Let the forward transmission operator be defined by F trans
ω,d (Γ) = uout ∈ CNr ,

where uout
j = uscat(rj) and uscat is the solution of the transmission scatter-

ing problem, (1). Similarly, let the forward impedance operator be defined by

F imp
ω,d (Γ, λ) = uout ∈ CNr , where uout

j = ϕ(rj) and ϕ is the solution of the
impedance scattering problem, (2), with Y = −ık2λ.

Let Γ⋆ be the true boundary curve of interest and let umeas
ω,d = F trans

ω,d (Γ⋆).
At a given frequency ωj , a natural definition for the “best-fit” boundary curve
and GIBC is then given as the solution of the following constrained optimization
problem:

[
Γ̂j , λ̂j

]
= arg min

Γ∈SΓ(ωj),λ∈Sλ(ωj)

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ, λ)|2 , (4)

where the sets SΓ(ω) and Sλ(ω) are chosen to be appropriate spaces for the
curve and GIBC at a given pulsation, and can be designed to regularize the
problem.

The problems defined by (4) are generally nonlinear, non-convex, and ill-
posed. Following the continuation-in-frequency approach [12, 15, 20, 22, 32, 67],
we solve these problems in sequence beginning at the lowest frequency, where
the problem is approximately convex, and use the solution Γ̂j−1, λ̂j−1 as an

initial guess for Γ̂j , λ̂j . This helps to mitigate the non-convexity. We apply
standard iterative methods to handle the non-linearity and we select the sets
SΓ and Sλ to mitigate the ill-posedness. We then take the recovered boundary
and impedance function to be the solution of (4) for the highest frequency data
available.

We provide details of the constraint sets, impedance models, and gradient
formulas in Section 2. We describe the constraint set for the geometry, SΓ, in
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detail in Section 2.1. We present three options for describing the impedance
function λ (and appropriate constraint sets Sλ) in Section 2.2: a general model
based on a Fourier series in arc-length and two more-constrained models which
depend on the curvature function on Γ. While Fréchet derivative formulae are
known for the impedance boundary value problem, the curvature-dependent
models require some new expressions which we derive in Section 2.3.

We describe some details of the iterative optimization framework we use at
each frequency in Section 3. The curvature-dependent impedance models are
more amenable to the imposition of physical constraints, which can be handled
effectively by projected gradient methods as described in Section 3.4.

Numerical results are presented in Section 4. These indicate that the so-
lution scheme has greater success with the curvature-dependent models in cer-
tain regimes. Domain recovery is effective well below the level of dissipation
needed for qualitative agreement between the impedance and transmission for-
ward problems and the curvature-dependent models provide a meaningful ad-
vantage over some simpler alternatives. We find that the dissipation, δ, and the
product crρr can be recovered reliably, with sufficient dissipation, but recovering
the values cr and ρr individually appears to be difficult.

We discuss some implications of these results and possible future directions
in Section 5.

1.1 Relation to the literature

The inverse problem of recovering the shape and boundary conditions using
single frequency data and a model with the classical impedance boundary con-
ditions was studied by several authors [1, 43, 49, 50, 54, 57, 65, 68]. The single
frequency inverse scattering problem using the generalized impedance bound-
ary condition model was considered in [10, 23–25, 28, 40, 44, 47, 48, 73]. The
use of multifrequency data by applying continuation in frequency to recover the
sound speed of a volume was studied in [12, 15, 22, 32], to recover the shape
of an impenetrable domain was studied in [20, 67], and to recover the classical
impedance boundary condition simultaneously with the shape of obstacle was
studied in [21].

The present work introduces a new framework to simultaneously recover the
shape of an obstacle and an appropriate impedance function for multifrequency
transmission data from a dissipative obstacle. We build on techniques previ-
ously presented in [21], in particular the use of continuation-in-frequency for
the inverse problem and high-order-accurate methods for solving the associated
PDEs via integral equation representations. We provide some necessary formu-
lae and identify effective optimization schemes for treating curvature-dependent
impedance models, like the first order model, (3), of [5], in the inverse scattering
setting.
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2 Details of the model and gradient formulas

This section describes some details of the problem discretization and the con-
straint sets which regularize the problem at each frequency. The discretization
of the obstacle boundary curve and appropriate constraints are described in
Section 2.1. A couple of competing models for the impedance function and
appropriate constraints for these are described in Section 2.2. Two of the pro-
posed models have an impedance function that depends on the curvature of the
obstacle; to apply an iterative method for the solution of (4) with these models,
we then require some new derivative formulas that we derive in Section 2.3.

2.1 Representation of the obstacle and its constraints

Let T be the unit torus, [0, 1]. We represent a boundary curve, Γ, by a param-
eterization γ : T → R2, where γ(t) = (x(t), y(t)), with x, y : T → R, being
trigonometric polynomials of the form

x(t) = a1,0 +

N(ω)∑
m=1

(a1,m cos(2πmt) + b1,m sin(2πmt)) ,

y(t) = a2,0 +

N(ω)∑
m=1

(a2,m cos(2πmt) + b2,m sin(2πmt)) ,

(5)

where aj,0 and aj,m, and bj,m for j = 1, 2 and m = 1, . . . , N(ω) are real
constants and N(ω) is an integer proportional to ω.

To ensure that the inverse problem at frequency ω is well-posed, we require
that the parameterization of the curve, γ, have bandlimited curvature in a
suitable sense. The signed curvature H for a curve-parameterization γ is defined
as

H[γ] =
x′y′′ − x′′y′

(x′2 + y′2)3/2
. (6)

Here and below, the notation H[γ] refers to the parameterization of the cur-
vature on T, while H refers to the curvature as a function on Γ. We define
arc-length scaled Fourier coefficients of H by

aH,0 =
1

L

∫
Γ

H ds

aH,m =
2

L

∫
Γ

H cos(2πms/L) ds

bH,m =
2

L

∫
Γ

H sin(2πms/L) ds

where s is an arclength function on Γ and L is the length of the curve. We then
define E(Γ), and EM(ω)(Γ) to be the elastic energy of the curve Γ and the elastic
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energy contained in the first M(ω) modes of the curvature, respectively, i.e.

E(Γ) =

∫
Γ

H2 ds ,

EM(ω)(Γ) =

∫ 1

0

aH,0 +

M(ω)∑
m=1

(aH,m cos(2πms/L) + bH,m sin(2πms/L))

2

ds .

(7)
Selecting a value of M(ω) proportional to ω and a value of CH near 1, we
can impose a bandlimited curvature requirement as the constraint such that√
EM(ω) ≥ CH

√
E(Γ).

In addition to this constraint on the curvature, we impose that the curve is
simple, i.e. non-self-intersecting. The constraint set for the boundary curves is
then

SΓ(ω) = {Γ |Γ is simple and
√
EM(ω)(Γ) ≥ CH

√
E(Γ)} .

Beyond the constraint set, the problem can also be regularized by limiting
the possible search directions. Because a tangential update of the curve does not
change the shape, curve updates will always be in the normal direction, i.e. up-
dates will be of the form γ(t)→ γ(t) +h(t)n(t) where n = (y′,−x′)/

√
x′2 + y′2

is the normal to the curve. We will also only propose curve updates with fre-
quency content proportional to the frequency of the data, i.e. h : T → R will
be of the form

h(t) = ah,0 +

Nγ(ω)∑
m=1

(ah,m cos(2πmt) + bh,m sin(2πmt)) (8)

where ah,0 and ah,m and bh,m for m = 1, . . . , Nγ(ω) are real constants and
Nγ(ω) is an integer proportional to ω.

Remark 2. It should be noted that the integer parameters in this section, N(ω),
M(ω) and Nγ(ω), are all selected proportional to ω, but these values are selected
with different goals.

The values of M(ω) and Nγ(ω) are chosen with respect to the scale of bound-
ary features which can stably be recovered given scattering data collected at fre-
quency ω. In light of the Heisenberg uncertainty principle [32], it is unreason-
able to attempt to stably reconstruct features smaller than half of a wavelength
in size. Accordingly, we re-parameterize the curve so that it is equally-spaced in
arc-length after each boundary update so that these parameters are meaningful.

The value of N(ω) determines the number of discretization nodes which are
used to represent the curve and should be selected to be sufficiently large that
the boundary integral equation method used to approximate the solution of the
forward problems is accurate. For accuracy, it is typically sufficient to sample
the curve at some fixed number of points per wavelength. One contrast between
N(ω) and the other parameters is that there is not much harm in selecting N(ω)
too large, other than the unnecessary computational burden.
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2.2 Impedance function models

We consider three models for the impedance function. The first is to model
the impedance function, λFS, in terms of its parameterization, ℓFS, as a Fourier
series:

ℓFS[c](t) =

Nc(ω)∑
m=−Nc(ω)

cm exp(2πımt) , (9)

where λFS[c](γ(t)) = ℓFS[c](t) and Nc(ω) should be chosen to effectively regu-
larize the model. The inverse problem at a single frequency, (4), can then be
rephrased as

[
Γ̂j , ĉj

]
= arg min

Γ∈SΓ(ωj),c∈C2Nc(ωj)+1

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ, λFS[c])|2 . (10)

The second approach is to model the impedance as a linear function of the
curvature:

λCH[α] = α1 + α2H , (11)

where α = (α1, α2) ∈ C2. The inverse problem at a single frequency, (4), can
then be rephrased as

[
Γ̂j , α̂j

]
= arg min

Γ∈SΓ(ωj),α∈C2

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ, λCH[α])|2 . (12)

We also consider a more restricted form of the curvature-dependent model
which is based directly on the first order model in (3):

λABV[β] = β2
√

1− ıβ1 −
ıβ3(1− ıβ1)

k2
H , (13)

where the parameters can be taken to be non-negative and real, i.e. β ∈ R3
≥0.

The β parameters are related to the physical parameters as follows:

β1 =
δ

ω
, β2 =

1

ρrcr
√

1 + δ2/ω2
, β3 =

1

ρr(1 + δ2/ω2)
. (14)

The inverse problem at a single frequency (4) can then be rephrased as

[
Γ̂j , β̂j

]
= arg min

Γ∈SΓ(ωj),β∈R3
≥0

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ, λABV[β])|2 . (15)

The λABV model has the natural physical constraint that β = (β1, β2, β3) ∈
R3

≥0. Some natural constraints on the λCH model are that Im(α1) ≤ 0 and
Im(α2) ≤ 0. For these simple models, it is relatively easy to impose such
constraints using the methods of Section 3.4. Physical constraints for the λFS
model are both less obvious and more difficult to impose. In the numerical
examples in this manuscript, the λFS model coefficients are unconstrained.
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Remark 3. Above, we parameterize λABV by β instead of the actual physical
parameters, δ, cr, and ρr. One reason for this is that the natural constraints
are δ ≥ 0, cr > 0, and ρr > 0 and the impedance function becomes infinite
if cr = 0 or ρr = 0. The constrained optimization problem is simpler for the
closed, convex constraint set of the β variables. In particular, we do not have
to select arbitrary lower bounds for cr and ρr.

2.3 Fréchet derivatives of the forward operator F imp

Let F imp
ω,d be the forward map defined as in the introduction, i.e. F imp

ω,d (Γ, λ) ∈
CNr is the solution of the impedance scattering problem (2) for the incident
field uinc = exp(ık2d · x) evaluated at the receptors, rj . To apply standard
iterative solvers to the minimization problem (4), we require expressions for the

derivatives of F imp
ω,d with respect to the curve Γ and the impedance function λ.

We will drop the dependence of F imp on ω and d for the sake of brevity.
The derivations of the Fréchet derivative formulas we need are more straight-

forward with respect to parameterizations of the curve and impedance function.
Let γ : T → R2 and ℓ : T → C be functions on the unit torus, [0, 1], such that
Γ = γ([0, 1]) and λ(γ(t)) = ℓ(t). We will use the abusive notation F imp(γ, ℓ)
for F imp(Γ, λ). The advantage of the function F imp(γ, ℓ) is that it is a map
between fixed Banach spaces, say F imp : C4(T)×C2(T)→ CNr , whereas in the
original notation the space for λ changes as Γ changes. Below, the notations
D1F imp(γ, ℓ) and D2F imp(γ, ℓ) refer to the Fréchet derivatives with respect to
the first and second inputs (holding the other fixed), respectively.

Explicit formulas for these derivatives are known. They are expressed as the
solutions of impedance scattering problems. In the theorem below, parameteri-
zations defined on T must be interpreted as functions on the boundary, Γ. This
is accomplished by composition with the inverse map γ−1 in the same way that
λ = ℓ ◦ γ−1.

Theorem 1 (Adapted from [25, Theorem 4.8] and [24, Theorem 4.1]). Let Γ be
a regular, closed curve and λ be a complex-valued function on Γ with Im(λ) ≥ 0.
Assume these functions have parameterizations γ ∈ C4(T) and ℓ ∈ C2(T),
respectively. Let u = uscat +uinc be the total field for the solution of the original
obstacle problem (2).
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Let h ∈ C4(T). The jth entry of
[
D1F imp(γ, ℓ)

]
h is equal to vγ(rj), where

−(∆ + k22)vγ = 0 in Ω ,

∂nvγ + ık2λvγ = k22(h ◦ γ−1) · nu

+
d

ds

(
(h ◦ γ−1) · ndu

ds

)
− λ(h ◦ γ−1) · n (∂nu−Hu)

+
dλ

ds
(h ◦ γ−1) · τu on Γ ,√

|x|
(
vγ − ık2

x

|x|
· ∇vγ

)
→ 0 as |x| → ∞ ,

(16)

and τ is the positively oriented tangent vector on Γ.
Let g ∈ C2(T). The jth entry of

[
D2F imp(γ, ℓ)

]
g is equal to vλ(rj), where

−(∆ + k22)vλ = 0 in Ω ,

∂nvλ + ık2λvλ = −ık2(g ◦ γ−1)u on Γ ,√
|x|

(
vλ − ık2

x

|x|
· ∇vλ

)
→ 0 as |x| → ∞ .

(17)

Remark 4. In practice, we only consider normal perturbations. The formula
for D1F imp simplifies in this case because (h ◦ γ−1) · τ = 0.

For the λCH and λABV models of the impedance function, the impedance
function depends on the curvature of the domain. In terms of parameterizations,
we write this as ℓ[γ]. The Fréchet derivative of F imp(γ, ℓ[γ]) with respect to γ
can then be obtained by applying the chain rule

[
DγF imp(γ, ℓ[γ])

]
h =

[
D1F imp(γ, ℓ[γ])

]
h +

[
D2F imp(γ, ℓ[γ])

]
[Dγℓ[γ]]h .

The formula for Dγℓ[γ] for both the λCH and λABV models requires a formula
for the Fréchet derivative of the curvature parameterization, H[γ], with respect
to the boundary. The following direct formula for this derivative can be verified
by hand calculation:

Proposition 1. Let γ ∈ C3(T) and let H[γ] be the signed curvature as defined
in (6). Let h be a normal perturbation of the curve, i.e. h(t) = h(t)n(t) for a
function h ∈ C2(T). Then,

[DγH[γ]]h = −H[γ]2h+
x′x′′ + y′y′′

(x′2 + y′2)2
h′ − 1

x′2 + y′2
h′′ . (18)
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3 Optimization methods

This section describes details related to the optimization procedures used to
solve the inverse scattering problems. The continuation-in-frequency approach [7,
12–16, 20, 22, 31, 32, 67] is the over-arching framework. This applies to multi-
frequency data collected for a set of frequencies ω1 < ω2 < · · · < ωNk

. As

explained in the introduction, this approach begins with initial guesses, Γ̂0 and
λ̂0, of the domain boundary and impedance function, respectively, and does the
iteration

[
Γ̂j , λ̂j

]
= loc arg min

Γ∈SΓ(ωj),λ∈Sλ(ωj)

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ, λ)|2 , (19)

where the notation loc arg min indicates that the minimization problem is solved
using a standard local optimization procedure based on gradient information and

the initial guess
[
Γ̂j−1, λ̂j−1

]
. The basic idea of the method is that the global

minimizers at each frequency, subject to appropriate choices of the constraint
sets, should be sufficiently close that a local solve works to find the global
minimum at each step. See the references above for more discussion.

Section 3.1 provides an overview of the alternating minimization approach we
use to solve problems of the form (19), which alternates between minimization
of the objective over the domain parameters and over the impedance parame-
ters. We use two different methods for obtaining descent directions (in terms
of either the domain or impedance function parameters): Gauss-Newton and
steepest descent. Formulas for these in the inverse obstacle setting are provided
in Section 3.2. We discuss the strategies used to minimize the objective function
under the given constraints in the case of the domain in Section 3.3 and in the
case of the impedance function in Section 3.4.

3.1 Alternating minimization

We solve optimization problems of the form (19) by alternating minimization:
we apply a step of an optimization algorithm with respect to the domain bound-
ary parameters and then a step of an optimization algorithm with respect to
the impedance function parameters. This approach is classical [56, 72] and has
been previously applied in the non-convex setting [11, 19]. This is particularly
convenient because our methods for staying in the constraint sets for the domain
parameters and the impedance function parameters are different.

At frequency ωj , the initial guesses for the domain boundary and impedance

function are Γ
(0)
j = Γ̂j−1 and λ

(0)
j = λ̂j−1, respectively. Then, we apply the

following alternating minimization iteration to find a local solution of (19):

• (Fix λ and optimize over Γ) Let γ : T → R2 be a parameterization of

Γ
(q−1)
j . Find the parameterization of a descent direction h = hn with

respect to the domain boundary, where h : T → R such that the curve
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Γ
(q)
j with the parameterization γ +h : T→ R2 satisfies Γ

(q)
j ∈ SΓ(ωj) and

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ
(q)
j , λ

(q−1)
j )|2 ≤

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ
(q−1)
j , λ

(q−1)
j )|2 .

(20)

• (Fix Γ and optimize over λ) Let γ : T→ R2 be a parameterization of Γ
(q)
j .

Find the parameterization of a descent direction g : T → C with respect

to the impedance function such that the impedance function, λ
(q)
j with

parameterization ℓ
(q)
j (t) = ℓ

(q−1)
j (t) + g(t) satisfies λ

(q)
j ∈ Sλ(ωj) and

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ
(q)
j , λ

(q)
j )|2 ≤

Nd∑
i=1

|umeas
ωj ,di

−F imp
ωj ,di

(Γ
(q)
j , λ

(q−1)
j )|2 .

(21)

Methods for finding appropriate descent directions and satisfying the con-
straints are discussed in the following subsections. Because we generally apply
second order methods (Gauss-Newton) to the boundary minimization and first
order methods (projected gradient descent) to deal with the constraint sets for
the impedance minimization, we run multiple iterations, determined by Ninner,
of the impedance minimization for every iteration of the full framework.

We impose a number of stopping criteria. We set a tolerance ϵR for the
relative residual

Rω(Γ̂, λ̂) =

√√√√ Nd∑
i=1

∣∣∣umeas
ω,di

−F imp
ω,di

(Γ̂, λ̂)
∣∣∣2/ Nd∑

i=1

∣∣∣umeas
ω,di

∣∣∣2 , (22)

such that we terminate if Rω ≤ ϵR. We try to detect stagnation by monitoring
for small relative changes in the norm of the domain parameters, impedance
parameters, and the relative residual. These tolerances are denoted by ϵs,Γ, ϵs,λ,
and ϵs,R, respectively. We also impose a maximum number of iterations, Nf , of
the alternating minimization framework at each frequency. See algorithm 5 at
the end of the section for pseudo-code of the alternating minimization procedure.
This pseudo-code uses routines optimize domain and optimize impedance
which are detailed below after a discussion of the procedures for domain and
impedance function optimization; see algorithms 3 and 4.

3.2 Obtaining descent directions

The objective function in (19) is in the form of a nonlinear least squares problem.
Here we briefly review two popular descent methods for such objective functions:
steepest descent and Gauss-Newton.

Consider a function F : Cn → R of the form
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F (v) =
1

2

m∑
j=1

|fj(v)− zj |2 =
1

2
∥f(v)− z∥2 ,

where each fj : Cn → C is holomorphic in the complex vi variables, the data
are zi ∈ C for i = 1, . . . ,m, and f(v) and z are the vectors collecting these
values. Recall that the Jacobian is the matrix J(v) ∈ Cm×n with the entries
Jji(v) = ∂vifj(v).

The complex gradient of F is then [51]

∇vF = (J(v))∗(f(v)− z) ,

where the (J(v))∗ denotes the conjugate transpose. Using the negative of the
gradient as the search direction is known as steepest descent minimization.

A reasonable step size, d, in the direction of the negative of the gradient can
be obtained by minimizing the approximation

F (v − d∇vF ) ≈ 1

2
∥f(v)− dJ(v)∇vF − z∥2

=
1

2
∥f(v)− z∥2 − d∥∇vF∥2 +

d2

2
∥J(v)∇vF∥2 ,

as a function of d. The minimum occurs for

d =
∥∇vF∥2

∥J(v)∇vF∥2
. (23)

This is the so-called Cauchy point for the linearization. We use it as an initial
guess for the step size when the direction is based on the gradient.

The Gauss-Newton method is based on the linearization f(v+∆v) ≈ f(v)+
J(v)∆v. The minimizer ∆v of the approximation

F (v + ∆v) ≈ ∥f(v)− z + J(v)∆v∥2

is then the linear least squares solution of the system

J(v)∆v = z− f(v) ,

which can be computed by direct methods. The Gauss-Newton step has a
built-in notion of the appropriate step size, so the initial guess for d is 1 for this
descent direction.

Remark 5. For the domain and the λABV impedance model, the parameters
are real-valued so that the objective function is of the form F : Rn → R, with
fj : Rn → C. In this case, we are interested in the real gradient and real Gauss-
Newton directions, which are straightforwardly computed by decomplexifying f .
The gradient is

∇vF̃ =

[
Re(J(v))
Im(J(v))

]T [
Re(f(v)− z)
Im(f(v)− z)

]
,

13



and for the Gauss-Newton method, the update is the linear least squares solution
of [

Re(J(v))
Im(J(v))

]
∆v = −

[
Re(f(v)− z)
Im(f(v)− z)

]
.

Specifics for boundary curve optimization Suppose that at frequency ω
we have the approximate boundary curve, Γ, and the approximate impedance
function λ. Suppose that this curve has the parameterization γ : T → R2. As
noted above, we consider only normal perturbations of this curve of the form
h = hn, where n(t) is the normal to the curve at γ(t). Let Nγ(ω) be given
and hw be parameterized as in (8), i.e. as a real Fourier series, with parameters
w = (ah,0, ah,1, . . . , ah,Nγ , bh,0, bh,1, . . . , bh,Nγ ) ∈ R2Nγ+1. Then, we consider
minimizing the objective function

FΓ(w) =

Nd∑
i=1

|umeas
ω,di

−F imp
ω,di

(Γ(w), λ)|2 ,

where the curve Γ(w) is the curve with the parameterization γw : T → R2

defined by γw(s) = γ(t) + hw(t)n(t).
The values of

∂wjF
imp
ω,di

(γw, ℓ[γw]) ∈ CNr ,

where ℓ[γw] indicates the dependence of the parameterization of λ on the curve
in the λABV and λCH models, can be obtained using the Fréchet derivative
formulae of Section 2.3 and applying the chain rule when appropriate. In par-
ticular,

∂wj
F imp

ω,di
(γw, ℓ[γw]) =


[
DγF imp

ω,di
(γw, ℓ[γw])

]
ϕjn if j ≤ Nγ + 1[

DγF imp
ω,di

(γw, ℓ[γw])
]
ψjn if j > Nγ + 1

,

where ϕj(t) = cos(2π(j − 1)t) and ψj(s) = sin(2π(j −Nγ − 1)t).

Remark 6. The Jacobian matrix for the geometry update, J(w), is NrNi ×
(2Nγ + 1). We must solve a PDE for each incident direction di and each entry
of w to fill the matrix. See Appendix A.3 for a brief discussion of computational
costs.

Specifics for impedance function optimization Suppose that at frequency
ω we have the approximate boundary curve, Γ. We consider three objective
functions, depending on the impedance function model:
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FλFS
(c) =

Nd∑
i=1

|umeas
ω,di

−F imp
ω,di

(Γ, λFS[c])|2 ,

FλCH(α) =

Nd∑
i=1

|umeas
ω,di

−F imp
ω,di

(Γ, λCH[α])|2 ,

FλABV
(β) =

Nd∑
i=1

|umeas
ω,di

−F imp
ω,di

(Γ, λABV[β])|2 .

As above, the entries of the Jacobian can be obtained using the Fréchet
derivative formulae of Section 2.3. For example,

∂αj
F imp

ω,di
(γ, λCH[α] ◦ γ) =


[
D2F imp

ω,di
(γ, λCH[α] ◦ γ)

]
1 if j = 1[

D2F imp
ω,di

(γ, λCH[α] ◦ γ)
]
H[γ] if j = 2

,

where 1 denotes the function that is constant 1 and H[γ] is the parameterization
of the signed curvature function on Γ. The λFS and λABV cases can be treated
in similar fashion; we omit the details for the sake of brevity.

3.3 Filtering methods for the domain

Following the notation of the previous section, let w be the Fourier series coef-
ficients defining an update hw. We find coefficients wgn and wsd corresponding
to Gauss-Newton and steepest descent directions, respectively, and set d to be
the step length for steepest descent determined using the Cauchy point formula
(23). We set hgn = hwgn and hsd = hdwsd

. For either update, it is not guar-
anteed that the new curve, Γ(wgn) with parameterization γgn = γ + hgnn or

Γ(dwsd) with parameterization γsd = γ + hsdn, is in the constraint set, SΓ(ω).
We follow two strategies for modifying these updates [7]: step-length filtering
and Gaussian filtering.

Step-length filtering is the basic strategy of shortening the step in the given
direction until the constraints are met and the residual is non-increasing. Let
ηfilt > 1 and Nfilt, a positive integer, be the filtering parameters. For any
update h with parameters w, the filtered update is then h/ηnfilt

filt , where nfilt is
the smallest ℓ with 0 ≤ ℓ ≤ Nfilt such that

Γ(w/ηℓfilt) ∈ SΓ(ω) and FΓ(w/ηℓfilt) ≤ FΓ(0) ,

with the convention that the filtered step is of size 0 if there is no ℓ satisfying
the conditions. We denote the step-length filtered steps for each direction by
hgn,sf and hsd,sf.
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In practice, step-length filtering results in overly short steps when the update
induces self-intersections or high curvature. The idea of Gaussian filtering is to
attenuate high frequency components of the update in order to more efficiently
avoid these geometric issues [7].

Let w be the parameters of a given update. Recall that the first Nγ + 1
entries correspond to cosines of increasing frequency and the last Nγ entries
to sines of increasing frequency. Let σfilt > 0 be a given filtering parameter
determining the width of a Gaussian and define the diagonal linear operator Gσ

by

Gσ(em) =


exp

(
− (m−1)2

σ2N2
h

)
em if 1 ≤ m ≤ Nh + 1,

exp
(
− (m−Nh−1)2

σ2N2
h

)
em if Nh + 2 ≤ m ≤ 2Nh + 1.

The filtered update is then hwgf
, where wgf = Gσ

nfilt
filt

w and nfilt is the smallest

ℓ with 0 ≤ ℓ ≤ Nfilt such that

Γ(Gσℓ
filt
w) ∈ SΓ(ω) and FΓ(Gσℓ

filt
w) ≤ FΓ(0) ,

with the convention that the filtered step is of size 0 if there is no ℓ satisfying the
conditions. We denote the Gaussian filtered steps for each direction by hgn,gf

and hsd,gf.
We have found that the best performance is obtained by attempting all

strategies. At each step, we select h to be the filtered step out of the options
hgn,sf, hgn,gf, hsd,sf, and hsd,gf for which the updated curve results in the mini-
mum residual.

To keep the discretization nodes evenly distributed and to ensure that the
regularization parameters Nc(ω), Nγ(ω), and M(ω) are meaningful, we re-
sample the domain so that the nodes are equally spaced in arc-length. We
use an algorithm similar to the one described in [17], though we simply re-
sample the Fourier interpolant instead of attempting to find a new, bandlimited
interpolant, as in [17].

See algorithm 3 for a detailed pseudo-code of the filtering procedure as well
as the supporting subroutines in algorithms 1 and 2, which describe the methods
for updating the domain and parameterizations.

Algorithm 1 w = fourier series coefficients(f , {t1, . . . , tn}, m)
Sample the function at the points and compute the Fourier coefficients of the
resulting discrete vector. Truncate or pad as necessary.

Input: f , {t1, . . . , tn}, m
1: f ← (f(t1), . . . , f(tn))
2: w ← DFT (f) ▷ sin/cos Fourier transform if w real
3: w ← pad or truncate w to order m

Output: w
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Algorithm 2 γout, ℓout = domain update(γ, h, ℓ, ω)
Given the parameterization of a curve update, form the updated curve, resample
in arc-length, and update the impedance function if necessary.

Input: γ, h, ℓ, ω
1: n ← normal vector of parameterization γ
2: Nsamp ← 2N(ω) + 1 ▷ Order N(ω) expansion is length Nsamp

3: w ← fourier series coefficients(γ + hn, {j/Nsamp}
Nsamp

j=1 ,N(ω))
4: t1, . . . , tNsamp

← arc length resample(w) ▷ See definition below

5: wout ← fourier series coefficients(γ + hn, {tj}
Nsamp

j=1 ,N(ω))

6: γout ← function defined by coefficients wout

7: if impedance model is λFS then
8: ▷ Resample impedance function and truncate Fourier series

9: vout ← fourier series coefficients(ℓ, {tj}
Nsamp

j=1 ,Nc(ω))

10: ℓout ← function defined by coefficients vout

11: else
12: ℓout ← ℓ
Output: γout,ℓout.
13: function arc length resample(w)
14: N ← order of the coefficients w
15: γ ← function defined by coefficients w

16: L ←
∫ 1

0
|γ′(t)| dt ▷ Length of curve

17: t1, . . . , t2N+1 ← points such that
∫ tj+1

tj
|γ′(t)| dt = L/(2N + 1)

18: Return {tj}2N+1
j=1
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Algorithm 3 γout, ℓout = optimize domain(γ, ℓ, ω, Nfilt, σfilt, ηfilt)
Minimize the residual with respect to the domain parameterization, γ, holding
the parameters of the impedance function, ℓ, fixed. For the λFS model, the
parameterization ℓ may be resampled along with γ.

Input: γ, ℓ, ω, Nfilt, σfilt, ηfilt.
1: Initialize R0 ← Rω(γ, ℓ), Rout ← R0, γout ← γ, ℓout ← ℓ
2: for h = {hgn, hsd} do ▷ Gauss-Newton and steepest-descent directions.

3: w ← fourier series coefficients(h,{j/N(ω)}N(ω)
j=1 ,N(ω))

4: for p = 1, . . . , Nfilt do ▷ Try Gaussian filter first
5: wG ← Gσp

filt
w

6: hG ← function defined by coefficients wG

7: γG, ℓG ← domain update(γ,hG,ℓ,ω)
8: if γG ∈ SΓ(ω) and Rω(γG, ℓG) < R0 then
9: if Rω(γG, ℓG) < Rout then

10: Update γout ← γG, ℓout ← ℓG, Rout ← Rω(γG, ℓG)

11: break
12: for p = 1, . . . , Nfilt do ▷ Then try step-length filter
13: hS ← h/ηpfilt
14: γS , ℓS ← domain update(γ,hS ,ℓ,ω)
15: if γS ∈ SΓ(ω) and Rω(γS , ℓS) < R0 then
16: if Rω(γS , ℓS) < Rout then
17: Update γout ← γS , ℓout ← ℓS , Rout ← Rω(γS , ℓS)

18: break
Output: γout,ℓout.

3.4 Projection methods for the impedance function

The constraint sets for the λCH and λABV models are closed and convex, so the
corresponding constrained minimization problem can be treated by a projected
gradient method [37, 74]. In particular, the impedance optimization problems
are of the form

min
v∈C

F (v) ,

where C is a closed, convex set. The simple iteration

vj+1 = projC(vj − dj∇vF (vj)) , (24)

where dj is a step-length parameter and

projC(y) = arg min
x∈C

∥y − x∥ ,

is known as a projected gradient method. The iteration is known to converge
under mild assumptions on F [37, 39].

The convex constraint set for λCH is given by
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CCH = {v ∈ C2 : Im(v) ≤ 0} ,

where the imaginary part and inequality are interpreted component-wise. The
projection operator for this set is simple to compute:

projCCH
(y) = Re(y) + ımin(Im(y),0) ,

where, likewise, the minimum and real part operators are interpreted component-
wise. The convex constraint set for λABV is given by

CABV = {v ∈ R2 : v ≥ 0} .

The projection operator for this set is also simple to compute:

projCABV
(y) = max(y,0) .

Finally, the convex constraint set for λFS is CFS = C2Nc(ω)+1 for which the
projection operator is the identity map.

We use a similar strategy to the step length filtering strategy for the do-
main to select the step length. For example, in the λABV model the updated
parameters would be

projCABV
(β − d∇βFλABV(β)/ηnfilt

filt ) ,

where d is the original step length determined by the Cauchy point formula (23)
and nfilt is the smallest ℓ with 0 ≤ ℓ ≤ Nfilt such that

FλABV

(
projCABV

(
β − d∇βFλABV

(β)/ηℓfilt
))
≤ FλABV

(β) ,

with the convention that the step is size 0 if there is no ℓ satisfying the conditions.
See algorithm 4 for pseudo-code of this procedure.

Remark 7. While we did not use a Gauss-Newton descent direction for the
impedance function optimization in the examples below, it can be done and
there is one interesting phenomenon to note. If the curvature of the domain
is nearly constant, say for a circular domain, the Jacobian matrix for the cur-
vature dependent models is highly ill-conditioned. We found that one remedy
was to compute the condition number of the Jacobian and revert to a constant
impedance model if the condition number was above some threshold.
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Algorithm 4 ℓout = optimize impedance(γ, ℓ, ω, Nfilt, ηfilt)
Minimize the residual with respect to the parameters of the impedance model
for the impedance function, ℓ, holding the domain parameterization, γ, fixed.

Input: γ, ℓ, ω, Nfilt, ηfilt.
1: Initialize R0 ← Rω(γ, ℓ), Rout ← R0, ℓout ← ℓ
2: v ← parameters of impedance model for ℓ
3: g ← −d∇vFλ(v) ▷ Fλ is one of FλABV

, FλCH
, FλFS

; see (23) for d
4: for p = 1, . . . , Nfilt do ▷ Step-length filtering with projection
5: vS ← projC(w + g/ηpfilt) ▷ C is one of CABV, CCH, CFS
6: if Rω(γ, ℓ[vS ]) < R0 then
7: Update ℓout ← ℓ[vs]
8: break

Output: ℓout.

Algorithm 5 γ̂, ℓ̂ = alternating min(γ0, ℓ0,ω, Nf ,Ninner,Nfilt,σfilt,ηfilt,
ϵR, ϵs,Γ, ϵs,λ, ϵs,R)

Alternating between minimizing the residual as a function of the domain and
impedance parameters. Check for convergence and stalling.

1: ▷ γ and ℓ are parameterizations of the domain and impedance, respectively.
Input: γ0, ℓ0,ω, Nf ,Ninner,Nfilt,σfilt,ηfilt, ϵR, ϵs,Γ, ϵs,λ, ϵs,R
2: Nsamp ← 2N(ω) + 1

3: w0 ← fourier series coefficients(γ0, {j/Nsamp}
Nsamp

j=1 ,N(ω))
4: v0 ← impedance function parameters of ℓ0
5: R0 ← Rω(γ0, ℓ0)
6: for q = 1, . . . , Nf do
7: γq, ℓq ← optimize domain(γq−1, ℓq−1, ω, Nfilt, σfilt, ηfilt)
8: for p = 1, . . . , Ninner do
9: ℓq ← optimize impedance(γq, ℓq, ω, Nfilt, ηfilt)

10: γ̂, ℓ̂ ← γq, ℓq
11: Rq ← Rω(γq, ℓq)
12: if Rq < ϵR then ▷ Check for convergence
13: break
14: wq ← fourier series coefficients(γq, {j/Nsamp}

Nsamp

j=1 ,N(ω))
15: vq ← impedance function parameters of ℓq
16: if ∥wq −wq−1∥ ≤ ϵs,Γ∥wq∥ then ▷ Check for stagnation
17: break
18: if ∥vq − vq−1∥ ≤ ϵs,λ∥vq∥ then
19: break
20: if |Rq −Rq−1| ≤ ϵs,RRq then
21: break
Output: γ̂, ℓ̂
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4 Numerical results

The numerical experiments in this section explore the suitability of impedance
models for dissipative transmission problems. We describe common test settings
here. Tests with data generated by an impedance model are in Section 4.1 and
tests with data generated by a transmission model are in Sections 4.2 and 4.3.

Reproducibility The scripts used to generate these results [8] and the data
associated with the figures [6] are publicly available and archived.

Test data parameters Each test has a range of pulsation frequencies, which
are determined by the value kmax

2 , taken to be an integer. In particular, the
values of ω are of the form

ωj = c2 (1 + (j − 1)/2)

where j = 1, . . . , 2kmax
2 +1. Thus, there are Nk = 2kmax

2 +1 frequencies and the
exterior wave speeds range from 1 to kmax

2 , with a spacing of 1/2. The value of
kmax
2 is selected so that the obstacle can be reasonably well reconstructed from

data at the highest frequency.
For most of the examples, we assume best-case data in the sense that

there are sufficiently many incident directions and receptor locations to ob-
tain a good reconstruction and that the data are full aperture. In particular,
unless otherwise noted, the data are collected at all receptors for each inci-
dent angle, the number of incident directions and receptors is set to Nd(ω) =
Nr(ω) = ⌊10ω/c2⌋, the incident directions are set to di = (cos(θi), sin(θi)) for
i = 1, . . . , Nd(ω) with θi = 2πi/Nd(ω), and the receptors are located at the
points ri = (r cos(θi), r sin(θi)) for i = 1, . . . , Nr(ω) with r = 10.

One of our primary interests below is the performance of the model as the
dissipation, δ, varies. As a reference dissipation value, we use δ0 =

√
3kmax

2 ,
which is suggested in [4] as a value of dissipation where the asymptotic model
should become accurate for the highest pulsation in the data. The remaining
physical parameters are fixed as c1 = 0.5, c2 = 1.0, ρ1 = 1.2, and ρ2 = 0.7, so
that cr = 0.5 and ρr ≈ 1.7. This corresponds to the obstacle having a denser
material and a higher acoustic wave speed. We found that the results were
similar if instead cr > 1 and ρr < 1, though we did not explore the extremes.

Measures of error When applying continuation-in-frequency, we obtain a
sequence of approximations of the domain, {Γ̂j}Nk

j=1, and impedance functions,

{λ̂j}Nk
j=1, corresponding to the solution obtained at the frequencies {ωj}Nk

j=1.
We consider two quantitative error measurements for a given reconstruction of
the domain and impedance function Γ̂, λ̂. The first is the relative residual at
a given frequency; see (22). Below, we always plot Rωj (Γ̂j , λ̂j). The second
error measurement is the relative area of the symmetric difference between the
interior of the true obstacle, Ω⋆, and the interior of the recovered obstacle, Ω̂
(which has boundary Γ̂):
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E(Γ̂) =
area(Ω⋆ \ Ω̂) + area(Ω̂ \ Ω⋆)

area(Ω⋆)
. (25)

We approximate the areas in (25) based on the polygons defined by the boundary
nodes of Ω⋆ and Ω̂. This is an inherently low order approximation but appears
to provide at least 2 digits of precision in the examples below.

Discretization, regularization, and optimization method parameters
The PDEs are discretized using high order boundary integral equation methods
as described in Appendix A. We discretize the boundary curve using approx-
imately 10 points per wavelength by setting N(ω) = max(⌈5ωL/(c2π)⌉, 300),
where L is the length of the current approximation of the domain. This en-
sures that the forward map, F imp, and its Fréchet derivatives are evaluated
accurately.

Unless otherwise noted, the initial guess for the geometry, Γ̂0 is a unit circle
centered at the origin. The initial guess for the impedance function is always
λ̂0 ≡ 1.

In most of the examples, the data are generated using the forward model
with transmission boundary conditions and the inverse problem is solved using
the model with impedance boundary conditions, so that “inverse crimes” are
avoided. However, this is not the case in Section 4.1. An inverse crime is still
avoided there in that the data are generated using approximately 20 points per
wavelength whereas the inverse problem uses 10, the non-airplane domains are
not originally parameterized in arc-length whereas the inverse solver constantly
resamples in arc-length, and the true boundary curve is generally not contained
in the constraint set at the lowest frequencies. We have also added random noise
to this data on the order of 10 times the (approximate) discretization error.

The search direction for the domain boundary update, h, is regularized by
limiting the length of its real Fourier series. This length is 2Nγ(ω) + 1 and
Nγ(ω) should be proportional to ω so that h does not contain features smaller
than half of a wavelength. We set Nγ(ω) = ⌊ωL/(c2π)⌋, where L is the length
of the current approximation of the domain. The λFS model is also regular-
ized by limiting the length of its Fourier series. This length is 2Nc(ω) + 1
and we set Nc(ω) = Nγ(ω)/2 following the advice of [21]. The constraint
set SΓ(ω) is determined by the amount of curvature regularization used. The
idea is that the amount of elastic energy contained in the first M(ω) modes
of the curvature should exceed some proportion of the total elastic energy, i.e.√
EM(ω) ≥ CH

√
E(Γ); cf. (7). We set CH = 0.9 and M(ω) = Nγ(ω). While

reasonable criteria for setting Nγ and Nc are understood, it is less clear how to
select CH and the solution of the inverse problem appears to be mildly sensitive
to this parameter. The value of CH = 0.9 was found to work on nearly all of
the examples; see Section 4.3 for an exception.

For detailed descriptions of the optimization parameters, refer to Section 3.
Alternating minimization is performed with a maximum of Nf = 40 iterations
and Ninner = 5 inner iterations for the impedance solver, with tolerance ϵR =
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10−4 and stagnation parameters ϵs,Γ = ϵs,λ = ϵs,R = 10−4. The values of Nf ,
ϵR, and the stagnation parameters are quite conservative; the tolerance is never
reached in the examples with transmission data below and stagnation could
likely be detected earlier without much effect on the quality of the solution.
We set a maximum of Nfilt = 3 filtrations per step. Step length filtering is
performed with ηfilt = 8 and Gaussian filtering is performed with σfilt = 10−1.
These filtering parameters are aggressive so that the limited number of filtration
steps can be effective, with the overall goal of reducing the number of PDEs that
must be solved during filtering.

4.1 Experiments with impedance data

Here we compare the performance of the three impedance models, λFS, λCH,
and λABV, for impedance data generated by the model of [5], i.e. generated
as the solution of (2) with the impedance model (3) and the dissipation set as
δ = δ0 =

√
3kmax

2 . We consider 4 different obstacle shapes. In Figure 2, the first
corresponds to a smooth obstacle shape parameterized as (r(t) cos(t), r(t) sin(t))
with r(t) given as constant perturbed by a random Fourier series (kmax

2 = 20),
the second row is a smooth airplane-like obstacle (kmax

2 = 30), the third row
is a more detailed airplane-like obstacle (kmax

2 = 40), and the fourth row is a
smooth starfish-like obstacle (kmax

2 = 30).
Specifically, the random obstacle has

r(t) = a0 +

7∑
j=1

aj cos(2πjt) + bj sin(2πjt) ,

where a = (1, , 0.0540,−0.0217, 0.1189, 0.1317,−0.0406,−0.0445, 0.1328) and b =
(0.0834, 0.0604,−0.0107, 0.0003, 0.0457, 0.0922,−0.0197). The starfish obstacle
is of the same form, except that most of the aj and bj are zero except for a0 = 1
and a5 = 0.3. The airplane obstacles are obtained from an image of the sil-
houette of an airplane (see file “SU571.png” in the repository [8]). To obtain
a smooth parameterization of the shape of the plane, we first obtain an initial
set of boundary points (function bwboundaries in MATLAB). There are 2029
points returned by this function. We then resample a Fourier interpolant of
these points to obtain Npts roughly equispaced points on its boundary. Then,
we approximate the two periodic functions defined by the x coordinates and y
coordinates of the Npts boundary points by a periodic cubic spline interpolant.
For the less detailed smooth airplane-like obstacle, we use Npts = 20 and for the
detailed airplane-like obstacle, we use Npts = 70. This operation is available in
the file “smooth plane.m” of the repository [8].

The three models perform equally well on the first three obstacles. To the
eye, these are capable of recovering sharp features and non-convex features of
the more detailed airplane. The λABV model appears to have a slight edge
over the λCH model, which can be seen most clearly by comparing the results
obtained for the two at pulsation ω = 10.
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Figure 2: Reconstructions of the domains obtained for the experiments with
impedance data of Section 4.1. The top row corresponds to a “random” obstacle,
the second row a smooth “airplane” obstacle, the third row a more detailed
“airplane” obstacle, and the bottom row a “starfish” obstacle. Each column is
labeled by the impedance model used in the inverse problem.
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Figure 3: Using a different initializer for the starfish domain in the impedance
data experiment of Section 4.1. Here we show an initial guess obtained from
solving the inverse problem with a constant impedance model up to frequency
ω = 5.5 and the refined inverse problem solution obtained by the λABV model
starting with this initial guess at the next frequency (ω = 6).

The constrained, curvature-dependent models fail on the starfish-like obsta-
cle. These models get caught in a local minimum that has the same symmetry as
the domain. Based on the results of the random smooth domain, which is simi-
larly constructed, and the airplane domains, which have reflective symmetry, it
appears that this phenomenon is specific to this type of starfish-like domain in
which the distance from the origin is correlated with the curvature of the do-
main. The λFS model avoids this issue because we select Nc(ω) to be Nγ(ω)/2,
which forces the optimization problem to resolve the domain first. In contrast,
the curvature-dependent models can have Fourier content that is similar to the
obstacle.

While this failure mode is worthy of note, we believe it to be unlikely to
appear in applications. It can also be mitigated by first solving the inverse
problem with a constant impedance model up to a certain frequency and then
switching to the curvature-dependent model; see Figure 3 for an example of this.

The above results show that the λABV and λCH models can perform as well as
the more general model λFS, at least when the data are generated by a boundary
condition in the class covered by these models. This impedance boundary condi-
tion is interesting because it is an approximation of the transmission boundary
condition for dissipative media. Because λABV is specifically designed for this
kind of data and it is straightforward to reconstruct the material parameters
from λABV, we will focus on its performance on transmission data in the sec-
tions below. We again compare λABV to alternative models for the transmission
problem in Section 4.2.4, including λFS, where λABV is observed to offer some
advantages.
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Figure 4: Experiment of Section 4.2.1 with transmission data using the λABV

impedance model for the inverse problem. The top row shows reconstructions
obtained for different values of the pulsation, ω, and dissipation, δ. The bottom
row has plots of the error measures as a function of ω and δ. The values of
(ω, δ) for the reconstructions in the top row are marked in red in the error plot.

4.2 Experiments with transmission data

The results of this section are for data generated by the transmission problem,
(1), for the more detailed airplane-like obstacle. In all examples in this section,
kmax
2 = 40. The model used for the inverse problems is always the impedance

model, (2), with the λABV model for the impedance function, unless otherwise
noted.

4.2.1 Effect of lowering dissipation

The λABV model is known to be more accurate for higher levels of dissipation,
with δ0 =

√
3kmax

2 providing good quantitative agreement in the scattered data
of the impedance and transmission models [4].

In this experiment, we generate transmission scattering data for the more
detailed airplane with δ = δ0/4

j for j = 0, 1, 2, 3, 4. We then solve the inverse
problem with the λABV model for each data set. The results are shown in
Figure 4.

We find that a reasonably close reconstruction of the obstacle is obtained
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Figure 5: Experiment of Section 4.2.1 with transmission data using the λABV

impedance model for the inverse problem. Each plot shows the recovery of a
physical parameter for various values of the dissipation, δ, as a function of the
pulsation, ω.

for dissipation as low as δ = δ0/64. For δ = δ0/256, the reconstruction fails
completely.

Given the parameters β̂ recovered by solving the inverse problem with the
λABV model, we can recover approximations of the physical parameters, de-
noted ρ̂r, ĉr, δ̂, from the relations (14). Figure 5 plots δ̂, ρ̂r, ĉr and ρ̂r ĉr as a
function of the pulsation for various values of the dissipation, δ. Because the
obstacle recovery improves as ω increases, it is expected that the recovered pa-
rameters should be better for higher values of the pulsation. The value of δ̂ is
reasonably accurate for higher levels of dissipation, but it gives an overestimate
for lower levels of dissipation. In most cases, the recovered values ρ̂r and ĉr
are not particularly accurate. However, the product ρ̂r ĉr is relatively accurate
in most regimes. We suspect that this is because the product ρ̂r ĉr appears in
the constant term of the λABV model, whereas only ρ̂r appears in the curvature
term; cf. (3).
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Figure 6: Experiment of Section 4.2.2 with noise-corrupted transmission data
using the λABV impedance model for the inverse problem. The top row shows
reconstructions obtained for different values of the pulsation, ω, and dissipation,
δ. The bottom row has plots of the error measures as a function of ω and δ.
The values of (ω, δ) for the reconstructions in the top row are marked in red in
the error plot.

28



planewave
dreceptors

α

Figure 7: Illustration of arrangement of receptors for backscatter data.

4.2.2 Experiment with noise

Here we explore the effect of additive noise on the recovery of the airplane. We
assume that the measured values are now of the form

umeas
ω,d = F trans

ω,d (Γ⋆) + Σ(ω)η , (26)

where the entries of η ∈ CNr are drawn from the standard normal distribution
and Σ(ω) = σmaxd |F trans

ω,d (Γ⋆)| for some constant σ.
In this experiment, we generate transmission scattering data for the more

detailed airplane with δ = δ0/4
j for j = 0, 1, 2, 3, 4. We then solve the inverse

problem with the λABV model for each data set and σ = 10−1. The results are
shown in Figure 6.

The effect of the noise is visible in the residual plot, where the smallest values
of the residual are similar to σ and about an order of magnitude larger than
in the noise-free case (cf. Figure 4). On the other hand, the actual recovered
domain performs at least as well (and in some cases better) than in the noise-free
case. This suggests that the recovery is reasonably robust to additive noise.

4.2.3 Experiment with backscatter data

In the examples above, we have best-case scattering data, in that the receptors
surround the obstacle, there are many incident directions, and the data are
available at all receptors for each incident wave. Such data may not be available
in all applications. Here we consider the recovery problem for backscatter data.
The backscatter set-up is illustrated in Figure 7. For this problem, we have the
same set of possible receptor locations as for the experiments above, but for each
incident wave we assume that measurements are only available within a certain
angle (α in the figure) about the axis defined by the planewave direction. For
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Figure 8: Experiment of Section 4.2.3 with backscatter transmission data using
the λABV impedance model for the inverse problem. The top row shows recon-
structions obtained for different values of the pulsation, ω, and dissipation, δ.
The bottom row has plots of the error measures as a function of ω and δ. The
values of (ω, δ) for the reconstructions in the top row are marked in red in the
error plot.

30



obstacle

initial guess

 = 5

 = 10

 = 40

10 20 30 40

10
0

10
1

10
2

10 20 30 40

10
0

10
1

10
2

10
-2

10
-1

10
0

Figure 9: Experiment of Section 4.2.4 with transmission data using the λFS
impedance model for the inverse problem. The top row shows reconstructions
obtained for different values of the pulsation, ω, and dissipation, δ. The bottom
row has plots of the error measures as a function of ω and δ. The values of
(ω, δ) for the reconstructions in the top row are marked in red in the error plot.

the experimental results here, α = π/4, so that the data set is 1/8th the size of
the data set in Section 4.2.1.

The results for backscatter data are shown in Figure 8. The residual plot
has minima at the lowest frequencies, where the optimization procedure appears
to get caught in local minima. While the recovered domains bear some visual
resemblance to the true domain, the recovery is not particularly accurate for
any value of dissipation.

4.2.4 Experiments with alternative models

In these experiments, we verify that the curvature-dependent model provides a
meaningful advantage over other models in certain regimes.

General Fourier series model At sufficiently high frequencies, the λFS
model should be able to approximate the λABV model and thus the resulting
residuals should be just as good. We provide the recovery results for the λFS
model applied to the same data as the experiment of Section 4.2.1 in Figure 9.
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Figure 10: Experiment of Section 4.2.4 with transmission data using a constant
impedance model for the inverse problem. The top row shows reconstructions
obtained for different values of the pulsation, ω, and dissipation, δ. The bottom
row has plots of the error measures as a function of ω and δ. The values of
(ω, δ) for the reconstructions in the top row are marked in red in the error plot.
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Figure 11: Experiment of Section 4.2.4 with transmission data using a sound-
hard model for the inverse problem. The top row shows reconstructions obtained
for different values of the pulsation, ω, and dissipation, δ. The bottom row has
plots of the error measures as a function of ω and δ. Note that the range
of δ values is different from the other examples. The values of (ω, δ) for the
reconstructions in the top row are marked in red in the error plot.
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For high levels of dissipation, the λFS model works as well as λABV in terms
of both the reconstruction error and the residual. However, for lower levels of
dissipation, particularly δ0/16 and δ0/64, the λABV model obtains a visually
good reconstruction while the λFS model does not. Thus, the more constrained
λABV model appears to provide more robust shape recovery in this regime.

Constant impedance model Above, the failure mode of the curvature-
dependent impedance models was addressed by first seeking a minimum with
the constant impedance model and then using the obtained domain as an initial
guess. To explore the viability of this simpler model in general, we provide the
recovery results for the constant impedance model applied to the same data as
the experiment of Section 4.2.1 in Figure 10. The results are similar to the
results obtained by the more general λFS model so that the constant impedance
model is a compelling alternative to λFS, though not as performant as λABV for
lower dissipation.

Neumann boundary condition model As δ increases, we have that λABV =
O(δ−1/2). In the limit, we then expect that the obstacle would behave as a
sound-hard obstacle. Here, we will test how well the sound-hard model does for
the recovery of the obstacle in the dissipative setting.

Let Fneu
ω,d (Γ) be the vector of values of ϕ(rj) where ϕ is the solution of the

PDE
−(∆ + k22)ϕ = 0 in Ω2 ,

∂nϕ = −∂nuinc on Γ ,√
|x|

(
ϕ− ik2

x

|x|
· ∇ϕ

)
→ 0 as |x| → ∞ .

(27)

We will solve the minimization problem

Γ̂j = arg min
Γ∈SΓ(ωj)

Nd∑
i=1

|umeas
ωj ,di

−Fneu
ωj ,di

(Γ)|2 , (28)

using similar tools to the ones we applied to the impedance model. We con-
sider a different range of values for the dissipation; we set δ = δ0/4

j for
j = −2,−1, 0, 1, 2.

The recovery results are shown in Figure 11. While the Neumann model
can recover the domain for the largest values of the dissipation, the recovery
obtained for δ ≤ δ0 has significant error.

4.3 A domain with corners

In these experiments, we explore the behavior of the recovery process for a do-
main with corners. The true domain is an “L”-shaped domain with the vertices
{(0, 0), (2, 0), (2, 1), (1, 1), (1, 2), (0, 2)}. The solution of the scattering problem
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Figure 12: Experiment of Section 4.3 with transmission data generated by an
“L”-shaped domain, using the λABV impedance model for the inverse problem.
The top row shows reconstructions obtained for different values of the pulsation,
ω, and dissipation, δ. The bottom row has plots of the error measures as a
function of ω and δ. The values of (ω, δ) for the reconstructions in the top row
are marked in red in the error plot.
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Figure 13: Detail of reconstructions near corners for the experiment of Sec-
tion 4.3 with transmission data generated by an “L”-shaped domain, using the
λABV impedance model for the inverse problem. The top row corresponds to
the re-entrant corner at (1, 1) and the bottom row corresponds to the corner at
(1, 2).

on this domain requires different solvers than the the previous examples be-
cause the associated boundary integral equation will have solutions with sin-
gularities near the corners; see Appendix A.3 for details. As in most examples
above, we generate scattering data for varying levels of dissipation, δ = δ0/4

j

for j = 0, 1, 2, 3, 4 and make full aperture measurements.
In contrast with the experiments above, the solution of the inverse problem

with the λABV model for this data appears to be more sensitive to the selection
of CH , which determines the amount of curvature regularization. To deal with
this, we solve the inverse problem with CH = 0.9 and CH = 0.95 and then
keep the solution with smaller residual at the highest frequency for the results
in Figure 12. In particular, the δ = δ0 reconstruction is better with CH = 0.9
and the δ = δ0/4 reconstruction is better with CH = 0.95 (in both cases the
worse reconstruction is stuck in a local minimum), while the remaining δ values
have similar performance for either value of CH .

We find that a reasonably close reconstruction of the obstacle is obtained
for dissipation as low as δ = δ0/256, even though the relative residual indicates
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Figure 14: Experiment of Section 4.3 with transmission data generated by an
“L”-shaped domain, using a constant impedance model for the inverse problem.
The top row shows reconstructions obtained for different values of the pulsation,
ω, and dissipation, δ. The bottom row has plots of the error measures as a
function of ω and δ. The values of (ω, δ) for the reconstructions in the top row
are marked in red in the error plot.
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that the model is not particularly accurate for this level of dissipation. This
is a little better than observed for the airplane. Notably, the “L”-shape does
not have particularly narrow features, so that waves are not transmitting as
significantly as they do for the plane.

In general, it appears that the model still works well for data generated by a
domain with corners. We plot details of the reconstructions near the corners in
Figure 13. The δ = δ0/16 reconstruction shows mild oscillatory behavior near
the corners, while the δ = δ0/256 and δ = δ0/64 reconstructions are smoother
but not as near to the original curve. This is because the CH value in the δ0/16
plot is CH = 0.9, while it is CH = 0.95 in the δ0/64 and δ0/256 plots. Thus,
the latter plots were generated with more regularization.

We include results using a constant impedance model in Figure 14, using
the same strategy of choosing the best performance out of two reconstructions
obtained for CH = 0.9 and CH = 0.95. The model performs reasonably well,
though the residuals and errors are larger than the λABV model, particularly
for lower levels of dissipation. Thus, the curvature-dependent model provides
an advantage even for flat domains with corners. Intuitively, a smooth approxi-
mation of a corner will encode information about the angle of the corner in the
sign and magnitude of its curvature near the corner.

5 Conclusion and future directions

We have developed an optimization framework for using curvature-dependent
impedance models, like λABV, to solve inverse problems with transmission data
from a dissipative obstacle. The model succeeds in recovering the obstacle
boundary reasonably accurately, even at values of the dissipation for which
waves transmit through the narrowest parts of the obstacle. Intuitively, the
model fails for lower amounts of dissipation where many waves transmit.

The recovered material parameters are relatively accurate for the dissipation,
δ, and the product of the relative sound speed and relative density, crρr, but
the individual values of cr and ρr appear more difficult to recover. Because
the domain is recovered well with the impedance model, we plan to explore the
use of a transmission model as a post-processing step to obtain more accurate
material parameters once the domain is set.

The model appears to be robust to (and may benefit from) additive noise and
provides a meaningful advantage over simpler models, like constant impedance
or Neumann boundary conditions, in terms of the range of values of the dis-
sipation to which it applies. Because an impedance model can emulate both
Neumann and Dirichlet boundary conditions in certain limits [21], we believe
that these results further support the use of a curvature-dependent impedance
model as a first-pass model for any scattering data.

While the λABV model was the focus of the numerical experiments, the sim-
ilar λCH model is more general and achieves results nearly as good. We plan
to explore the performance of λCH in more settings; for example, the more con-
strained λABV is specific to the type of transmission boundary condition consid-
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ered here but λCH could conceivably be used as a model for other transmission
conditions and thin coatings.

Finally, the lackluster results with backscatter data suggest that further work
is needed for certain experimental settings. Our experience is that manipulating
the M(ω) and CH parameters was insufficient to improve the situation. We
plan to investigate improved regularization strategies and more sophisticated
optimization methods in these regimes.

Acknowlegments

The authors would like to thank Jeremy Hoskins and Manas Rachh for many
useful discussions.

Funding The work of C. Borges was supported in part by the Office of Naval
Research under award number N00014-21-1-2389.

Data availability statement

The data that support the findings of this study are openly available. Specifi-
cally, the scripts used to generate these results [8] and the data associated with
the figures [6] are publicly available.

References

[1] I. Akduman and R. Kress. Direct and inverse scattering problems for inho-
mogeneous impedance cylinders of arbitrary shape. Radio Science, 38(3),
2003. URL https://doi.org/10.1029/2002RS002631.

[2] B. K. Alpert. Hybrid gauss-trapezoidal quadrature rules. SIAM
Journal on Scientific Computing, 20(5):1551–1584, 1999. URL
https://doi.org/10.1137/S1064827597325141.

[3] X. Antoine and H. Barucq. Approximation by generalized impedance
boundary conditions of a transmission problem in acoustic scattering.
ESAIM: Mathematical Modelling and Numerical Analysis, 39(5):1041–
1059, 2005. URL https://doi.org/10.1051/m2an:2005037.

[4] X. Antoine and H. Barucq. On the construction of approximate
boundary conditions for solving the interior problem of the acous-
tic scattering transmission problem. In Domain decomposition meth-
ods in science and engineering, pages 133–140. Springer, 2005. URL
https://doi.org/10.1007/3-540-26825-1 9.

[5] X. Antoine, H. Barucq, and L. Vernhet. High-frequency asymptotic analysis
of a dissipative transmission problem resulting in generalized impedance
boundary conditions. Asymptotic Analysis, 26(3-4):257–283, 2001.

39



[6] T. Askham and C. Borges. Data Supplement to Impedance Examples (Ver-
sion 1.1), June 2024. URL https://doi.org/10.5281/zenodo.12559924.

[7] T. Askham, C. Borges, J. Hoskins, and M. Rachh. Random walks in
frequency and the reconstruction of obstacles with cavities from multi-
frequency data. Journal of Scientific Computing, 98(1):15, 2023. URL
https://doi.org/10.1007/s10915-023-02406-z.

[8] T. Askham, C. Borges, J. Hoskins, and M. Rachh.
askhamwhat/impedance-examples: version 1.1, June 2024. URL
https://doi.org/10.5281/zenodo.12559791.

[9] T. Askham, M. Rachh, M. O’Neil, J. Hoskins, D. Fortunato,
S. Jiang, F. Fryklund, T. Goodwill, H. Y. Wang, and H. Zhu.
chunkIE: a MATLAB integral equation toolbox, June 2024. URL
https://github.com/fastalgorithms/chunkie.
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Phys. USSR, 2(3):233–242, 1940.

[59] O. Scherzer. Handbook of Mathematical Methods in Imag-
ing. Handbook of Mathematical Methods in Imaging.
Springer New York, 2010. ISBN 9780387929194. URL
https://books.google.com/books?id=FzvNfkMjvPwC.

[60] T. B. A. Senior. Impedance boundary conditions for imperfectly conducting
surfaces. Applied Scientific Research, Section B, 8(1):418–436, 1960. URL
https://doi.org/10.1007/BF02920074.

44



[61] T. B. A. Senior. Approximate boundary conditions for homogeneous di-
electric bodies. Journal of electromagnetic waves and applications, 9(10):
1227–1239, 1995. URL https://doi.org/10.1163/156939395X00019.

[62] T. B. A. Senior. Generalized boundary conditions for scalar fields. The
Journal of the Acoustical Society of America, 97(6):3473–3477, 1995. URL
https://doi.org/10.1121/1.412433.

[63] T. B. A. Senior and J. L. Volakis. Approximate boundary con-
ditions in electromagnetics. Number 41 in IEEE Electromagnetic
Waves Series. The Institution of Electrical Engineers, 1995. URL
https://doi.org/10.1049/PBEW041E.

[64] T. B. A. Senior, J. L. Volakis, and S. R. Legault. Higher or-
der impedance and absorbing boundary conditions. IEEE Trans-
actions on Antennas and Propagation, 45(1):107–114, 1997. URL
https://doi.org/10.1109/8.554247.

[65] P. Serranho. A hybrid method for inverse scattering for shape
and impedance. Inverse Problems, 22(2):663, 2006. URL
https://doi.org/10.1088/0266-5611/22/2/017.

[66] F. Simonetti. Inverse scattering in modern ultrasound imaging. The Jour-
nal of the Acoustical Society of America, 123(5):3915–3915, 2008. URL
https://doi.org/10.1121/1.2935927.

[67] M. Sini and N. T. Thanh. Inverse acoustic obstacle scattering problems
using multifrequency measurements. Inverse Problems and Imaging, 6(4):
749–773, 2012. URL https://doi.org/10.3934/ipi.2012.6.749.

[68] R. T. Smith. An inverse acoustic scattering problem for an ob-
stacle with an impedance boundary condition. Journal of math-
ematical analysis and applications, 105(2):333–356, 1985. URL
https://doi.org/10.1016/0022-247X(85)90052-6.

[69] C. Turc, Y. Boubendir, and M. K. Riahi. Well-conditioned
boundary integral equation formulations and nyström discretizations
for the solution of helmholtz problems with impedance boundary
conditions in two-dimensional lipschitz domains. The Journal of
Integral Equations and Applications, 29(3):441–472, 2017. URL
https://www.jstor.org/stable/26407485.

[70] E. Ustinov. Encyclopedia of Remote Sensing, chapter Geo-
physical Retrieval, Inverse Problems in Remote Sensing, pages
247–251. Springer New York, New York, NY, 2014. ISBN
978-0-387-36699-9. doi: 10.1007/978-0-387-36699-9 54. URL
http://dx.doi.org/10.1007/978-0-387-36699-9 54.

45



[71] D. S. Wang. Limits and validity of the impedance boundary condition on
penetrable surfaces. IEEE transactions on antennas and propagation, 35
(4):453–457, 1987. URL https://doi.org/10.1109/TAP.1987.1144125.

[72] S. J. Wright. Coordinate descent algorithms. Mathematical programming,
151(1):3–34, 2015. URL https://doi.org/10.1007/s10107-015-0892-3.

[73] J. Yang, B. Zhang, and H. Zhang. Reconstruction of complex ob-
stacles with generalized impedance boundary conditions from far-field
data. SIAM Journal on Applied Mathematics, 74(1):106–124, 2014. URL
https://doi.org/10.1137/130921350.

[74] E. H. Zarantonello. Projections on convex sets in hilbert space and spectral
theory: Part i. projections on convex sets: Part ii. spectral theory. In
Contributions to nonlinear functional analysis, pages 237–424. Elsevier,
1971. URL https://doi.org/10.1016/B978-0-12-775850-3.50013-3.

A Integral equation formulations of the PDEs
and their numerical discretization

To solve the forward impedance and transmission problems, we reformulate the
partial differential equations, i.e. (1) and (2), using well-established methods
from layer potential theory [36]. We briefly describe the representations and
numerical methods we use in this section.

Consider an obstacle, Ω1, with a smooth boundary curve, Γ. Let Gk(x,y) =

ıH
(1)
0 (k∥x − y∥)/4 be the Green’s function for the two dimensional Helmholtz

equation and n be the outward normal to the obstacle boundary, Γ. Let Sk and
Dk denote the single and double layer operators, respectively, i.e.

Skσ(x) =

∫
Γ

Gk(x,y)σ(y)ds(y), Dkσ(x) =

∫
Γ

∂Gk(x,y)

∂n(y)
σ(y)ds(y) ,

for x ∈ R2 \Γ. For x ∈ Γ, we denote these operators by Sk and Dk, respectively.
We denote the normal derivatives of Sk and Dk by Kk and Tk, respectively, i.e.

Kkϕ(x) =

∫
Γ

∂Gk(x,y)

∂n(x)
ϕ(y)ds(y),

and

Tkϕ(x) = f.p.

∫
Γ

∂2Gk(x,y)

∂n(x)n(y)
ϕ(y)ds(y) ,

where x ∈ Γ and f.p. indicates that the integral is interpreted in the Hadamard
finite part sense.

On smooth curves, Sk, Dk, and Kk are weakly singular integral operators,
while Tk is hyper-singular.
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A.1 Transmission problem

To solve the transmission problem, we represent the scattered field inside the
obstacle, denoted uscatk1

, and outside the obstacle, denoted uscatk2
, as

uscatk1
= −uinc +

1

b1
Dk1

µ− 1

b1
Sk1

σ

uscatk2
=

1

b2
Dk2

µ− 1

b2
Sk2

σ

(29)

where µ and σ are unknown densities defined on Γ and b1 = α = 1/(ρr(1+ıδ/ω))
and b2 = 1.

Applying the boundary conditions in (1) to the representation (29) we obtain
the system of boundary integral equations[

I + 1
qb2
Dk2
− 1

qb1
Dk1

−
(

1
qb2
Sk2
− 1

qb1
Sk1

)
Tk2 − Tk1 I − (Kk2 −Kk1)

] [
µ
σ

]
=

[
− 1

qu
inc

−b2 ∂uinc

∂n

]
, (30)

where q = (1/b1 + 1/b2)/2. This system is Fredholm and has a unique solution
for the wavenumbers treated in this paper. While Tki

is hyper-singular for
i = 1, 2, the operator Tk2 − Tk1 is weakly singular owing to cancellations in the
singularities.

A.2 Impedance problem

To solve the impedance and Neumann (λ = 0) problems, we use the regularized
combined layer potential representation proposed and analyzed in [27, 69]. In
particular, we adopt the representation

uscat =
(
Sk2 + ık2Dk2Sı|k2|

)
ϕ . (31)

Applying the boundary conditions in (2) to the representation (31) and ap-
plying Calderon identities, gives the boundary integral equation[
−2 + ık2

4
I +Kk2 + ık2

((
Tk2 − Tı|k2|

)
Sı|k2| +

(
Kı|k2|

)2)
+ ık2λ

(
Sk2+

ık2Dk2
Sı|k2| +

ık2
2
Sı|k2|

)]
ϕ = −

(
∂uinc

∂n
+ ık2λu

inc

)
, (32)

which is Fredholm and has a unique solution when 2 + ık2 ̸= 0. Similar to the
above, Tk2

−Tı|k2| is a weakly singular operator, so that the calculations can be
arranged with all integral kernels used being weakly singular.

A.3 Numerical Solution

The Nyström method can be used to solve both systems (30) and (32). We
discretize the boundary Γ using N = O(k), with approximately 10 points per
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wavelength, where for the impedance boundary condition k = k2 and for the
transmission problem k = max(k1, k2). To discretize the weakly singular integral
operators we apply the Hybrid Gauss-trapezoidal quadrature rule of order 16
from [2].

For the special case of the “L”-shaped domain in Section 4.3, we apply a
different solver. To solve the resulting boundary integral equation, whose solu-
tion develops singularities at the corners, we apply the recursively compressed
inverse pre-conditioner (RCIP) scheme of [42] which is available in the chunkie

MATLAB package [9]. This software is based on dividing the boundary into pan-
els, each of which is approximated by a 16th order Legendre interpolant. The
panels are divided so that they are no longer than 4/k2 (similar to a points-per-
wavelength requirement). The weakly-singular integrals in the BIE are com-
puted using generalized Gaussian quadrature [26]. The RCIP scheme effectively
solves the problem using a dyadically refined mesh near the corners; we select
40 levels of refinement. The accuracy of the solver is then tested against an
analytic solution. In the examples in the paper, there are at least ten digits of
precision in these tests (often more).

We invert the resulting linear system directly using Gaussian elimination at
the cost of O(k3) operations. We store the inverse, so this work is amortized
over incident directions and the inverse can be applied in O(k2) operations per
incident field to generate forward data. With O(k) incident fields, the total
work at a given frequency is then O(k3) for generating data and for evaluating
the objective function. In the inverse problem, filling the Jacobian matrix,
as described in Section 3.2, requires O(k) PDE solves per incident direction
resulting in O(k4) total work at a given frequency. These costs can be reduced
by using alternate optimization methods or by employing fast methods for the
PDE solutions but this was not a focus of the present work.
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